scholarly journals Performance Evaluation of Hop-Based Range-Free Localization Methods in Wireless Sensor Networks

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
M. Keshtgary ◽  
M. Fasihy ◽  
Z. Ronaghi

Knowledge of nodes' locations is an important requirement for many applications in Wireless Sensor Networks. In the hop-based range-free localization methods, anchors broadcast the localization messages including a hop count value to the entire network. Each node receives this message and calculates its own distance with anchor in hops and then approximates its own location. In this paper, we review range-free localization methods and evaluate the performance of two methods: “DV-hop” and “amorphous” by simulation. We consider some parameters like localization accuracy, energy consumption, and network overhead. Recent papers that evaluate localization methods mostly concentrated on localization accuracy. But we have considered a group of evaluation parameters, energy consuming, and network overhead in addition to the location accuracy.

Author(s):  
Fengrong Han ◽  
Izzeldin Ibrahim Mohamed Abdelaziz ◽  
Xinni Liu ◽  
Kamarul Hawari Ghazali ◽  
Hao Wang

Location plays a backbone role in networks, since it will great influence basic wireless sensor networks (WSNs) architecture. Distance-Vector Hop (DV-Hop) is a representative range-free localization algorithm, which is widely utilized to locate node position in location-based application. However, with poor localization accuracy, it cannot satisfy precise location-based application requirement. Consequently, we proposed a hybrid range-free algorithm depends on dynamic communication range to address low localization accuracy problem, named as DCDV-Hop. Firstly, we applied statistical methods to analyze the relationship between location error and hop count under different communication ranges. Thereafter, we employed centroid algorithm to calculate target node coordinate based on hop threshold. Finally, a weighted least square is applied to locate remaining target nodes. We conducted considerable experiments, the results demonstrated that our proposed algorithm DCDV-Hop can effectively reduce accumulate localization error and improve localization accuracy of target nodes, with stable performance.  Moreover, maximum localization accuracy reached up to 91.35% and localization error reduced more than 50%, compared with DV-Hop algorithm.


2012 ◽  
Vol 457-458 ◽  
pp. 825-833
Author(s):  
Qin Qin Shi ◽  
Jian Ping Zhang ◽  
Yun Xiang Liu

Two range-free node localization schemes modified from the conventional DV-Hop scheme are presented in this work. Different node position derivation algorithms are used to enhance the localization accuracy of DV-Hop. The principle of the algorithms and the improvement approach are illustrated. Simulation shows that the modified schemes outperform the original scheme in terms of the localization accuracy as the network connection topology varies.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4665 ◽  
Author(s):  
Zhaoyang Wang ◽  
Xuebo Jin ◽  
Xiaoyi Wang ◽  
Jiping Xu ◽  
Yuting Bai

Reliable and accurate localization of objects is essential for many applications in wireless networks. Especially for large-scale wireless sensor networks (WSNs), both low cost and high accuracy are targets of the localization technology. However, some range-free methods cannot be combined with a cooperative method, because these range-free methods are characterized by low accuracy of distance estimation. To solve this problem, we propose a hard decision-based cooperative localization method. For distance estimation, an exponential distance calibration formula is derived to estimate distance. In the cooperative phase, the cooperative method is optimized by outlier constraints from neighboring anchors. Simulations are conducted to verify the effectiveness of the proposed method. The results show that localization accuracy is improved in different scenarios, while high node density or anchor density contributes to the localization. For large-scale WSNs, the hard decision-based cooperative localization is proved to be effective.


2011 ◽  
Vol 135-136 ◽  
pp. 814-819
Author(s):  
Xue Cun Yang ◽  
Yuan Bin Hou ◽  
Ling Hong Kong

Aimed at the people localization in the underground mine, the bounding-inbox localization algorithm of wireless sensor networks based on RSSI is presented in this paper, which combines the merits of range-based and range-free localization methods. And, signal strength information between fixed anchor nodes and unknown ones is taken as the weights of bounding-inbox algorithm to calculate. The result of simulating experiment in underground mine environment proves that this algorithm is of less computing cost and can improve the localization accuracy.


2010 ◽  
Vol 50 (3) ◽  
pp. 199-213 ◽  
Author(s):  
Di Ma ◽  
Meng Joo Er ◽  
Bang Wang ◽  
Hock Beng Lim

Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


Sign in / Sign up

Export Citation Format

Share Document