scholarly journals Hybrid Projection Algorithm for a New General System of Variational Inequalities in Hilbert Spaces

2012 ◽  
Vol 2012 ◽  
pp. 1-22
Author(s):  
S. Imnang

A new general system of variational inequalities in a real Hilbert space is introduced and studied. The solution of this system is shown to be a fixed point of a nonexpansive mapping. We also introduce a hybrid projection algorithm for finding a common element of the set of solutions of a new general system of variational inequalities, the set of solutions of a mixed equilibrium problem, and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Several strong convergence theorems of the proposed hybrid projection algorithm are established by using the demiclosedness principle. Our results extend and improve recent results announced by many others.

2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Qiao-Li Dong ◽  
Yan-Ni Guo ◽  
Fang Su

Based on the relaxed extragradient method and viscosity method, we introduce a new iterative method for finding a common element of solution of equilibrium problems, the solution set of a general system of variational inequalities, and the set of fixed points of a countable family of nonexpansive mappings in a real Hilbert space. Furthermore, we prove the strong convergence theorem of the studied iterative method. The results of this paper extend and improve the results of Ceng et al., (2008), W. Kumam and P. Kumam, (2009), Yao et al., (2010) and many others.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Araya Kheawborisut ◽  
Atid Kangtunyakarn

AbstractFor the purpose of this article, we introduce a modified form of a generalized system of variational inclusions, called the generalized system of modified variational inclusion problems (GSMVIP). This problem reduces to the classical variational inclusion and variational inequalities problems. Motivated by several recent results related to the subgradient extragradient method, we propose a new subgradient extragradient method for finding a common element of the set of solutions of GSMVIP and the set of a finite family of variational inequalities problems. Under suitable assumptions, strong convergence theorems have been proved in the framework of a Hilbert space. In addition, some numerical results indicate that the proposed method is effective.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yuanheng Wang ◽  
Liu Yang

The purpose of this paper is to introduce a new modified relaxed extragradient method and study for finding some common solutions for a general system of variational inequalities with inversestrongly monotone mappings and nonexpansive mappings in the framework of real Banach spaces. By using the demiclosedness principle, it is proved that the iterative sequence defined by the relaxed extragradient method converges strongly to a common solution for the system of variational inequalities and nonexpansive mappings under quite mild conditions.


2011 ◽  
Vol 2011 ◽  
pp. 1-23
Author(s):  
S. Imnang ◽  
S. Suantai

We introduce a new iterative scheme for finding a common element of the set of solutions of a general system of variational inequalities, the set of solutions of a mixed equilibrium problem, and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Using the demiclosedness principle for nonexpansive mappings, we prove that the iterative sequence converges strongly to a common element of the above three sets under some control conditions, and we also give some examples for mappings which satisfy conditions of the main result.


2013 ◽  
Vol 2013 ◽  
pp. 1-25 ◽  
Author(s):  
L. C. Ceng ◽  
A. Petruşel ◽  
J. C. Yao

We suggest and analyze relaxed extragradient iterative algorithms with regularization for finding a common element of the solution set of a general system of variational inequalities, the solution set of a split feasibility problem, and the fixed point set of a strictly pseudocontractive mapping defined on a real Hilbert space. Here the relaxed extragradient methods with regularization are based on the well-known successive approximation method, extragradient method, viscosity approximation method, regularization method, and so on. Strong convergence of the proposed algorithms under some mild conditions is established. Our results represent the supplementation, improvement, extension, and development of the corresponding results in the very recent literature.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1502
Author(s):  
Sun Young Cho

In a real Hilbert space, we investigate the Tseng’s extragradient algorithms with hybrid adaptive step-sizes for treating a Lipschitzian pseudomonotone variational inequality problem and a strict pseudocontraction fixed-point problem, which are symmetry. By imposing some appropriate weak assumptions on parameters, we obtain a norm solution of the problems, which solves a certain hierarchical variational inequality.


Sign in / Sign up

Export Citation Format

Share Document