scholarly journals A Research on Routing and Spectrum Allocation Algorithm for Elastic Optical Networks Based on Deep Learning

2021 ◽  
Vol 2 (3) ◽  
pp. 24-26
Author(s):  
Lina Cheng

Dynamic allocation request and spectrum release will lead to spectrum fragmentation, which will affect the allocation of subsequent services and spectrum resource utilization of elastic optical network. This paper proposes a new routing and spectrum allocation algorithm based on deep learning, which will find the best routing and spectrum allocation method for a specific network, so as to improve the overall network performance. Simulation results show that compared with the traditional resource allocation strategy, the neural network model used in this paper can improve the degree of spectrum fragmentation and reduce the network blocking probability.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Li ◽  
Zhai Ya-Fang ◽  
Li Hong-Jie

AbstractWith the rapid development of mobile Internet, high-definition video and cloud computing, users’ bandwidth demands are not only larger and larger but also more and more diverse. To solve this problem, there searchers put forward the concept of elastic optical network (EON). EON adopts the transmission mode of elastic grid, which can allocate spectrum resources flexibly and meet high bandwidth and diversity requirements at the same time. Routing and spectrum allocation (RSA) is an important issue in EON. In this paper, we present a heuristic algorithm named constrained-lower-indexed-block (CLIB) allocation algorithm for the RSA problem. The algorithm is based on the K candidate paths. When there are available spectrum blocks on multiple candidate paths, if the increase of the path length does not exceed a given threshold, the lower index spectrum would be selected for the connection request on a longer path. The aim of the algorithm is to concentrate the occupied frequency slices on one side of the spectrum and leave another side of the spectrum to the later arrived connection requests as much as possible, to reduce the blocking probability of connection requests. Simulation results show that comparing with the first-last-fit and hybrid grouping algorithms, the CLIB algorithm can reduce the blocking probability of connection requests.


Photonics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 64 ◽  
Author(s):  
Emanuele Virgillito ◽  
Alessio Ferrari ◽  
Andrea D’Amico ◽  
Vittorio Curri

In order to cope with the increase of the final user traffic, operators and vendors are pushing towards physical layer aware networking as a way to maximize the network capacity. To this aim, optical networks are becoming more and more open by exposing physical parameters enabling fast and reliable estimation of the lightpath quality of transmission. This comes in handy not only from the point of view of the planning and managing of the optical paths but also on a more general picture of the whole optical network performance. In this work, the Statistical Network Assessment Process (SNAP) is presented. SNAP is an algorithm allowing for estimating different network metrics such as blocking probability or link saturation, by generating traffic requests on a graph abstraction of the physical layer. Being aware of the physical layer parameters and transceiver technologies enables assessing their impact on high level network figures of merit. Together with a detailed description of the algorithm, we present a comprehensive review of several results on the networking impact of multirate transceivers, flex-grid spectral allocation as a means to finely exploit lightpath capacity and of different Space Division Multiplexing (SDM) solutions.


2017 ◽  
Vol 63 (4) ◽  
pp. 423-429 ◽  
Author(s):  
Ireneusz Olszewski

Abstract The considered problem covers routing and spectrum allocation problem (RSA problem) in Elastic Optical Networks while maintaining the spectrum continuity constraints, non-overlapping spectra constraints for adjacent connections on individual links of the network and spectrum contiguity constraints of the connection. In this article the modified version of the First Fit spectrum slot allocation policy for Fixed Alternate Routing in flexible optical networks has been proposed. The Fixed Alternate Routing with proposed spectrum allocation policy rejects fewer requests, provides less bandwidth blocking probability and less spectrum fragmentation than Fixed Alternate Routing with well-known First Fit and Exact Fit spectrum allocation policies. However, the cost of improving these parameters is a higher computational complexity of the proposed allocation policy.


2017 ◽  
Vol 63 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Edyta Biernacka ◽  
Jerzy Domżał ◽  
Robert Wójcik

Abstract The introduction of flexible frequency grids and advanced modulation techniques to optical transmission, namely an elastic optical network, requires new routing and spectrum allocation techniques. In this paper, we investigate dynamic two-step routing and spectrum allocation (RSA) methods for elastic optical networks. K-shortest path-based methods as well as spectrum allocation methods are analysed and discussed. Experimental verification of the investigated techniques is provided using simulation software. Simulation results present effectiveness of routing and spectrum allocation methods for analyzed networks using requested bandwidth of connections. Moreover, performance of shortest path first methods improves considerably when a number of candidate paths increases in the UBN24 topology.


Sign in / Sign up

Export Citation Format

Share Document