scholarly journals Reflectance spectroscopy: a tool for predicting soil properties related to the incidence of Fe chlorosis

2012 ◽  
Vol 10 (4) ◽  
pp. 1133 ◽  
Author(s):  
J. C. Cañasveras Sánchez ◽  
V. Barrón ◽  
M. C. Del Campillo ◽  
R. A. Viscarra Rossel
Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1712
Author(s):  
Antonio Leone ◽  
Guido Leone ◽  
Natalia Leone ◽  
Ciro Galeone ◽  
Eleonora Grilli ◽  
...  

In this study, we examined the potential of vis-NIR reflectance spectroscopy, coupled with partial least squares regression (PLSR) analysis, for the evaluation and prediction of soil water retention at field capacity (FC) and permanent wilting point (PWP) and related basic soil properties [organic carbon (OC), sand, silt, and clay contents] in an agricultural irrigated land of southern Italy. Soil properties were determined in the laboratory with reference to the Italian Official Methods for Soil Analysis. Vis-NIR reflectance spectra were measured in the laboratory, using a high-resolution spectroradiometer. All soil variables, with the exception of silt, evidently affected some specific spectral features. Multivariate calibrations were performed to predict the soil properties from reflectance spectra. PLSR was used to calibrate the spectral data using two-thirds of samples for calibration and one-third for validation. Spectroscopic data were pre-processed [multiplicative scatter correction (MSC), standard normal variance (SNV), wavelet detrending (WD), first and second derivative transformation, and filtering] prior to multivariate calibration. The results revealed very good models (2.0 < RPD < 2.5) for the prediction of FC, PWP and sand, and excellent (RPD > 2.5) models for the prediction of clay and OC, whereas a poor (RPD < 1.4) prediction model was obtained for silt.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1895
Author(s):  
José Ramón Rodríguez-Pérez ◽  
Víctor Marcelo ◽  
Dimas Pereira-Obaya ◽  
Marta García-Fernández ◽  
Enoc Sanz-Ablanedo

Visible, near, and shortwave infrared (VIS-NIR-SWIR) reflectance spectroscopy, a cost-effective and rapid means of characterizing soils, was used to predict soil sample properties for four vineyards (central and north-western Spain). Sieved and air-dried samples were measured using a portable spectroradiometer (350–2500 nm) and compared for pistol grip (PG) versus contact probe (CP) setups. Raw data processed using standard normal variate (SVN) and detrending transformation (DT) were grouped into four subsets (VIS: 350–700 nm; NIR: 701–1000 nm; SWIR: 1001–2500 nm; and full range: 350–2500 nm) in order to identify the most suitable range for determining soil characteristics. The performance of partial least squares regression (PLSR) models in predicting soil properties from reflectance spectra was evaluated by cross-validation. The four spectral subsets and transformed reflectances for each setup were used as PLSR predictor variables. The best performing PLSR models were obtained for pH, electrical conductivity, and phosphorous (R2 values above 0.92), while models for sand, nitrogen, and potassium showed moderately good performances (R2 values between 0.69 and 0.77). The SWIR subset and SVN + DT processing yielded the best PLSR models for both the PG and CP setups. VIS-NIR-SWIR reflectance spectroscopy shows promise as a technique for characterizing vineyard soils for precision viticulture purposes. Further studies will be carried out to corroborate our findings.


Sign in / Sign up

Export Citation Format

Share Document