scholarly journals The Rann of Cutch Earthquake of 21 July 1956

MAUSAM ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 137-146
Author(s):  
A. N. TANDON

A seismometric study of the earthquake of 21 July 1956 in the Rann of Cutch, which caused destruction to life and property at Anjar, has been made. The epicentre and origin time have been determined by the method of least squares and are Lat. 23°20'N, Long 70000' E and 15h 32m 26S GMT respectively. The shock had a magnitude of 7 and a depth of focus of nearly 13 to 18 km.

1960 ◽  
Vol 50 (3) ◽  
pp. 467-470
Author(s):  
E. A. Flinn

ABSTRACT A straightforward least-squares iterative procedure for locating local earthquakes using only the direct waves Pg and Sg is now in use at the Australian National University. An IBM 650 electronic computer is used for all calculations, including estimates of the probable error of epicentral coordinates, depth of focus, and origin time.


2020 ◽  
pp. 60-73
Author(s):  
Yu V Nemirovskii ◽  
S V Tikhonov

The work considers rods with a constant cross-section. The deformation law of each layer of the rod is adopted as an approximation by a polynomial of the second order. The method of determining the coefficients of the indicated polynomial and the limit deformations under compression and tension of the material of each layer is described with the presence of three traditional characteristics: modulus of elasticity, limit stresses at compression and tension. On the basis of deformation diagrams of the concrete grades B10, B30, B50 under tension and compression, these coefficients are determined by the method of least squares. The deformation diagrams of these concrete grades are compared on the basis of the approximations obtained by the limit values and the method of least squares, and it is found that these diagrams approximate quite well the real deformation diagrams at deformations close to the limit. The main problem in this work is to determine if the rod is able withstand the applied loads, before intensive cracking processes in concrete. So as a criterion of the conditional limit state this work adopts the maximum permissible deformation value under tension or compression corresponding to the points of transition to a falling branch on the deformation diagram level in one or more layers of the rod. The Kirchhoff-Lyav classical kinematic hypotheses are assumed to be valid for the rod deformation. The cases of statically determinable and statically indeterminable problems of bend of the rod are considered. It is shown that in the case of statically determinable loadings, the general solution of the problem comes to solving a system of three nonlinear algebraic equations which roots can be obtained with the necessary accuracy using the well-developed methods of computational mathematics. The general solution of the problem for statically indeterminable problems is reduced to obtaining a solution to a system of three nonlinear differential equations for three functions - deformation and curvatures. The Bubnov-Galerkin method is used to approximate the solution of this equation on the segment along the length of the rod, and specific examples of its application to the Maple system of symbolic calculations are considered.


2020 ◽  
Vol 16 (3) ◽  
pp. 183-191
Author(s):  
Brad Lowery ◽  
Abigail Slater ◽  
Kaison Thies

AbstractIn this paper, we present a new model for ranking sports teams. Our model uses all scoring data from all games to produce a functional rating by the method of least squares. The functional rating can be interpreted as a team average point differential adjusted for strength of schedule. Using two team’s functional ratings we can predict the expected point differential at any time in the game. We looked at three variations of our model accounting for home-court advantage in different ways. We use the 2018–2019 NCAA Division 1 men’s college basketball season to test the models and determined that home-court advantage is statistically important but does not differ between teams.


Nature ◽  
1872 ◽  
Vol 6 (136) ◽  
pp. 101-102
Author(s):  
ASAPH HALL

Nature ◽  
1872 ◽  
Vol 6 (138) ◽  
pp. 140-141
Author(s):  
J. W. L. GLAISHER

1939 ◽  
Vol 29 (3) ◽  
pp. 427-462 ◽  
Author(s):  
Perry Byerly

Summary Least-squares adjustments of observations of waves of the P groups at central and southern California stations are used to obtain the speeds of various waves. Only observations made to tenths of a second are used. It is assumed that the waves have a common velocity for all earthquakes. But the time intercepts of the travel-time curves are allowed to be different for different shocks. The speed of P̄ is found to be 5.61 km/sec.±0.05. The speed for S̄ (founded on fewer data) is 3.26 km/sec. ± 0.09. There are slight differences in the epicenters located by the use of P̄ and S̄ which may or may not be significant. It is suggested that P̄ and S̄ may be released from different foci. The speed of Pn, the wave in the top of the mantle, is 8.02 km/sec. ± 0.05. Intermediate P waves of speeds 6.72 km/sec. ± 0.02 and 7.24 km/sec. ± 0.04 are observed. Only the former has a time intercept which allows a consistent computation of structure when considered a layer wave. For the Berkeley earthquake of March 8, 1937, the accurate determination of depth of focus was possible. This enabled a determination of layering of the earth's crust. The result was about 9 km. of granite over 23 km. of a medium of speed 6.72 km/sec. Underneath these two layers is the mantle of speed 8.02 km/sec. The data from other shocks centering south of Berkeley would not fit this structure, but an assumption of the thickening of the granite southerly brought all into agreement. The earthquakes discussed show a lag of Pn as it passes under the Sierra Nevada. This has been observed before. A reconsideration of the Pn data of the Nevada earthquake of December 20, 1932, together with the data mentioned above, leads to the conclusion that the root of the mountain mass projects into the mantle beneath the surface layers by an amount between 6 and 41 km.


Sign in / Sign up

Export Citation Format

Share Document