scholarly journals STUDY OF DOUBLE ITCZ OVER INDIAN OCEAN AS REVEALED BY INSAT CLOUD IMAGERY AND ITS ROLE FOR SOUTHWEST MONSOON

MAUSAM ◽  
2022 ◽  
Vol 44 (3) ◽  
pp. 298-300
Author(s):  
C. L. AGNIHOTRI
2020 ◽  
Author(s):  
Mirjam van der Mheen ◽  
Erik van Sebille ◽  
Charitha Pattiaratchi

Abstract. A large percentage of global ocean plastic waste enters the northern hemisphere Indian Ocean (NIO). Despite this, it is unclear what happens to buoyant plastics in the NIO. Because the subtropics in the NIO is blocked by landmass, there is no subtropical gyre and no associated subtropical garbage patch in this region. We therefore hypothesise that plastics "beach" and end up on coastlines along the Indian Ocean rim. In this paper, we determine the influence of beaching plastics by applying different beaching conditions to Lagrangian particle tracking simulation results. Our results show that a large amount of plastic likely ends up on coastlines in the NIO, while some crosses the equator into the southern hemisphere Indian Ocean (SIO). In the NIO, the transport of plastics is dominated by seasonally reversing monsoonal currents, which transport plastics back and forth between the Arabian Sea and the Bay of Bengal. All buoyant plastic material in this region beaches within a few years in our simulations. Countries bordering the Bay of Bengal are particularly heavily affected by plastics beaching on coastlines. This is a result of both the large sources of plastic waste in the region, as well as ocean dynamics which concentrate plastics in the Bay of Bengal. During the intermonsoon period following the southwest monsoon season (September, October, November), plastics can cross the equator on the eastern side of the NIO basin into the SIO. Plastics that escape from the NIO into the SIO beach on eastern African coastlines and islands in the SIO or enter the subtropical SIO garbage patch.


MAUSAM ◽  
2021 ◽  
Vol 42 (2) ◽  
pp. 145-150
Author(s):  
G. R. GUPTA ◽  
ONKARI PRASAD

The weekly mean cloud cover data for the pre-monsoon months of April and May over the Indian Ocean between20°S to 20°N latitudes and 40°E to 100" E longitudes have been studied for three good moon- soon years (1977, 1983, 1988) and three drought years (1972,1979, 1987). It is shown that while the characteristics of weekly mean cloud cover data during pre-monsoon months are similar for all the good monsoon years, they varied from one drought year to another. The study reveals some of the interesting features of southwest monsoon. An overall negative relationship between southern Indian Ocean convergence zone (SIOCZ) and monsoon activity is indicated. While at intraseasonal scale this may only be a simultaneous association, the pre-monsoon activity of SIOCZ may possibly have long-range predictive potential to some extent, for Indian monsoon rainfall.  


2018 ◽  
Vol 45 (13) ◽  
pp. 6594-6603 ◽  
Author(s):  
Corinne B. Trott ◽  
Bulusu Subrahmanyam ◽  
Alexis Chaigneau ◽  
Thierry Delcroix

1941 ◽  
Vol 22 (4) ◽  
pp. 143-149 ◽  
Author(s):  
C. E. Deppermann

Summary We wish to emphasize the fact that some types of maritime air, such as the South Pacific trade, though long in the equatorial regions, can remain quite dry and stable, not only while in such regions but also after leaving them for higher latitudes. It may well be that passage through a frontal zone, convergence from other causes such as Coriolis force or the pressure gradient surrounding continental heat lows, transit over warmer water surface, or even orographic effects may have much more to do with the wetness of some equatorial maritime air masses, like the true southwest monsoon of the Indian Ocean, than merely lengthy passage through the tropics aided only by local heat convection.


The linearized theory of unsteady wind-driven currents in a horizontally stratified ocean is applied to the northern part of the Indian Ocean. This is argued to be a suitable area for detailed application and evaluation of the theory because (i) the theory has certain advantages near the equator (for example, influence of detailed bottom topography is reduced, thermoclines are somewhat less variable in character, and speeds of baroclinic propagation are enhanced relative to current speeds), and (ii) the wind-stress pattern undergoes a well marked change with onset of the Southwest Monsoon, a change to which the pattern of currents shows a more or less identifiable, and rather quick, response which may be compared with theoretical predictions. Response is predicted to be found principally in two modes as far as vertical distribution of current is concerned; to a somewhat lesser extent in the barotropic mode with uniform distribution, and to a somewhat greater extent in the first baroclinic mode with current distribution as in figure 7, concentrated predominantly in the uppermost 200 m (see Appendix for detailed analysis of the modes appropriate to the equatorial Indian Ocean). Of particular interest is the strong Somali Current, that flows northward along the Somali coast only during the northern hemisphere summer (after monsoon onset) but during that time is comparable in volume flow (about 5 x 107 m3/s) to other western boundary currents such as the Gulf Stream. Detailed discussion of the application of linearized theory to equatorial oceans with western boundaries leads the author to conclude, both in the barotropic (§ 2) and baroclinic (§ 4) cases, that c wave packets5 of current pattern reaching such a boundary deposit the c flux5 they carry (velocity normal to the boundary integrated along it) in a boundary current which rather rapidly takes a rather concentrated form. Linear theory with horizontal transport neglected indicates that such flux requires of the order of 10 days to become concentrated in a current of 100 km width, but that thereafter it continues to become still thinner; however, with horizontal transport included, a steady-state finite thickness of current is reached. In reality, nonlinear effects would play an important additional part in limiting steady-state current thickness to the observed 100 km or thereabouts, but the time scale required to bring the thickness down to this value is probably given reasonably well by linear theory. Calculations for a zonal distribution of winds, which rather rapidly make a reversal of direction and increase of strength somewhat north of the Equator characteristic of the onset of the Southwest Monsoon, predict westward propagation of both barotropic and baroclinic wave energy at comparable speeds of the order of 1 m/s; the marked contrast here with other oceans (in the comparability of speeds) is given particularly detailed study. Calculations indicate that the barotropic signal is considerably distorted (figure 3) by the fact that low-wavenumber components reach the western boundary first. Baroclinic propagation takes the form of special planetary-wave modes concentrated near the equator (§3), of which perhaps four, delivering flux patterns depicted in figure 5, and possessing wave velocities of 0.9, 0.55, 0.4 and 0.3 m/s towards the west, are specially relevant to generation of the Somali Current. Peak surface flows in that current are predicted to be influenced about three times as much by this baroclinic propagation as by the barotropic. Theory indicates 1 month (of which two-thirds is needed for propagation of current patterns and one-third for their concentration in a boundary current) as characteristic time scale for formation of the Somali Current (see figure 6 in particular for the calculated baroclinic component) in contradistinction to the ‘decades’ predicted by the same type of theory in mid-latitude oceans (Veronis & Stommel 1956). Observations do, indeed, make clear that the time scale is not significantly more than 1 month, although the possibility that it might be still less cannot yet be decided on the basis of observational evidence. The flow is calculated as reaching 40 % of a typical maximum value (observed in August) already within 1 month of monsoon onset (May), even though no effect of wind stress acting within 500 km of the coast has been taken into account. The linearized theory predicts the current as reaching as far north as 6° N or 7°N, but nonlinear terms are generally found in computational studies (Bryan 1963; Veronis 1966) to bring about some ‘ inertial overshoot ’ in concentrated boundary currents, which may explain why the current does not in fact separate until about 9°N.


1998 ◽  
Vol 11 (8) ◽  
pp. 1859-1873 ◽  
Author(s):  
Catherine Gautier ◽  
Peter Peterson ◽  
Charles Jones

Abstract Novel ways of monitoring the large-scale variability of the southwest monsoon in the Indian Ocean are presented using multispectral satellite datasets. The fields of sea surface temperature (SST), surface latent heat flux (LHF), net surface solar radiation (SW), precipitation (P), and SW − LHF over the Indian Ocean are analyzed to characterize the seasonal and interannual variability with special emphasis on the period 1988–90. It is shown that satellite data are able to make a significant contribution to the multiplatform strategy necessary to describe the large-scale spatial and temporal variability of air–sea interactions associated with the Indian Ocean Monsoon. The satellite data analyzed here has shown for the first time characteristics of the interannual variability of air–sea interactions over the entire Indian Ocean. Using monthly means of SST, LHF, SW, P, and the difference SW − LHF, the main features of the seasonal and interannual variability of air–sea interactions over the Indian Ocean are characterized. It is shown that the southwest monsoon strongly affects these interactions, inducing dramatic exchanges of heat between air and sea and large temporal variations of these exchanges over relatively small timescale (with regards to typical oceanic timescales). The analyses indicate an overall good agreement between satellite and in situ (ship) estimates, except in the southern Indian Ocean, where ship sampling is minimal, the disagreement can be large. In the latitudinal band of 10°N–15°S, differences in climatological in situ estimates of surface sensible heat flux and net longwave radiation has a larger influence on the net surface heat flux than the difference between satellite and in situ estimates of SW and LHF.


Sign in / Sign up

Export Citation Format

Share Document