scholarly journals Vertically-integrated tropospheric moisture, energy and their fluxes over Bangladesh during landfall of tropical cyclones

MAUSAM ◽  
2021 ◽  
Vol 49 (2) ◽  
pp. 187-194
Author(s):  
SAMARENDRA KARMAKAR

The changes in the vertically-integrated tropospheric moisture. energy and their fluxes over Bangladesh have been studied during the landfall of three major cyclones at Bangladesh coast in the recent past. It has been found that the vertically- integrated tropospheric moisture, dry static energy, latent energy and total energy over the country have a tendency to decrease at the formation stages of the cyclones in the Bay of Bengal and then the same shows significant increase as the cyclones move northwards for ultimate landfall.   The integrated zonal and meridional fluxes of moisture, dry static energy, latent energy and total energy exhibit significant changes both in magnitudes and signs during the northward movement of the cyclones.

MAUSAM ◽  
2021 ◽  
Vol 48 (3) ◽  
pp. 367-374
Author(s):  
M.D. MAHBUB ALAM ◽  
SULTANA SHAFEE

  ABSTRACT. Upper-air data of 0000 UTC for standard isobaric surfaces at surface, 850, 700, 500, 400, 300, 200, 150 and 100 hPa levels for the different cyclonic periods in the last decade were considered for study. The dry static energy, the latent heat energy, the moist static energy and the total energy and their vertical distribution were studied in the surroundings of the Bay of Bengal in relation to the movement of the cyclone and their ultimate landfall. The effects of different  tropospheric energies considering the pressure as a vertical coordinate are discussed with the help of graphs.    


Radio Science ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1356-1367 ◽  
Author(s):  
Gargi Rakshit ◽  
Soumyajyoti Jana ◽  
Animesh Maitra

2007 ◽  
Vol 135 (12) ◽  
pp. 4006-4029 ◽  
Author(s):  
C. A. Reynolds ◽  
M. S. Peng ◽  
S. J. Majumdar ◽  
S. D. Aberson ◽  
C. H. Bishop ◽  
...  

Abstract Adaptive observing guidance products for Atlantic tropical cyclones are compared using composite techniques that allow one to quantitatively examine differences in the spatial structures of the guidance maps and relate these differences to the constraints and approximations of the respective techniques. The guidance maps are produced using the ensemble transform Kalman filter (ETKF) based on ensembles from the National Centers for Environmental Prediction and the European Centre for Medium-Range Weather Forecasts (ECMWF), and total-energy singular vectors (TESVs) produced by ECMWF and the Naval Research Laboratory. Systematic structural differences in the guidance products are linked to the fact that TESVs consider the dynamics of perturbation growth only, while the ETKF combines information on perturbation evolution with error statistics from an ensemble-based data assimilation scheme. The impact of constraining the SVs using different estimates of analysis error variance instead of a total-energy norm, in effect bringing the two methods closer together, is also assessed. When the targets are close to the storm, the TESV products are a maximum in an annulus around the storm, whereas the ETKF products are a maximum at the storm location itself. When the targets are remote from the storm, the TESVs almost always indicate targets northwest of the storm, whereas the ETKF targets are more scattered relative to the storm location and often occur over the northern North Atlantic. The ETKF guidance often coincides with locations in which the ensemble-based analysis error variance is large. As the TESV method is not designed to consider spatial differences in the likely analysis errors, it will produce targets over well-observed regions, such as the continental United States. Constraining the SV calculation using analysis error variance values from an operational 3D variational data assimilation system (with stationary, quasi-isotropic background error statistics) results in a modest modulation of the target areas away from the well-observed regions, and a modest reduction of perturbation growth. Constraining the SVs using the ETKF estimate of analysis error variance produces SV targets similar to ETKF targets and results in a significant reduction in perturbation growth, due to the highly localized nature of the analysis error variance estimates. These results illustrate the strong sensitivity of SVs to the norm (and to the analysis error variance estimate used to define it) and confirm that discrepancies between target areas computed using different methods reflect the mathematical and physical differences between the methods themselves.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Saiprasanth Bhalachandran ◽  
R. Nadimpalli ◽  
K. K. Osuri ◽  
F. D. Marks ◽  
S. Gopalakrishnan ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2010 ◽  
Vol 138 (2) ◽  
pp. 293-344 ◽  
Author(s):  
Robert A. Houze

Abstract Clouds within the inner regions of tropical cyclones are unlike those anywhere else in the atmosphere. Convective clouds contributing to cyclogenesis have rotational and deep intense updrafts but tend to have relatively weak downdrafts. Within the eyes of mature tropical cyclones, stratus clouds top a boundary layer capped by subsidence. An outward-sloping eyewall cloud is controlled by adjustment of the vortex toward gradient-wind balance, which is maintained by a slantwise current transporting boundary layer air upward in a nearly conditionally symmetric neutral state. This balance is intermittently upset by buoyancy arising from high-moist-static-energy air entering the base of the eyewall because of the radial influx of low-level air from the far environment, supergradient wind in the eyewall zone, and/or small-scale intense subvortices. The latter contain strong, erect updrafts. Graupel particles and large raindrops produced in the eyewall fall out relatively quickly while ice splinters left aloft surround the eyewall, and aggregates are advected radially outward and azimuthally up to 1.5 times around the cyclone before melting and falling as stratiform precipitation. Electrification of the eyewall cloud is controlled by its outward-sloping circulation. Outside the eyewall, a quasi-stationary principal rainband contains convective cells with overturning updrafts and two types of downdrafts, including a deep downdraft on the band’s inner edge. Transient secondary rainbands exhibit propagation characteristics of vortex Rossby waves. Rainbands can coalesce into a secondary eyewall separated from the primary eyewall by a moat that takes on the structure of an eye. Distant rainbands, outside the region dominated by vortex dynamics, consist of cumulonimbus clouds similar to non–tropical storm convection.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2975
Author(s):  
Huabing Xu ◽  
Rongzhen Yu ◽  
Danling Tang ◽  
Yupeng Liu ◽  
Sufen Wang ◽  
...  

This paper uses the Argo sea surface salinity (SSSArgo) before and after the passage of 25 tropical cyclones (TCs) in the Bay of Bengal from 2015 to 2019 to evaluate the sea surface salinity (SSS) of the Soil Moisture Active Passive (SMAP) remote sensing satellite (SSSSMAP). First, SSSArgo data were used to evaluate the accuracy of the 8-day SMAP SSS data, and the correlations and biases between SSSSMAP and SSSArgo were calculated. The results show good correlations between SSSSMAP and SSSArgo before and after TCs (before: SSSSMAP = 1.09SSSArgo−3.08 (R2 = 0.69); after: SSSSMAP = 1.11SSSArgo−3.61 (R2 = 0.65)). A stronger negative bias (−0.23) and larger root-mean-square error (RMSE, 0.95) between the SSSSMAP and SSSArgo were observed before the passage of 25 TCs, which were compared to the bias (−0.13) and RMSE (0.75) after the passage of 25 TCs. Then, two specific TCs were selected from 25 TCs to analyze the impact of TCs on the SSS. The results show the significant SSS increase up to the maximum 5.92 psu after TC Kyant (2016), which was mainly owing to vertical mixing and strong Ekman pumping caused by TC and high-salinity waters in the deep layer that were transported to the sea surface. The SSSSMAP agreed well with SSSArgo in both coastal and offshore waters before and after TC Roanu (2016) and TC Kyant (2016) in the Bay of Bengal.


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Viswanadhapalli Yesubabu ◽  
Vijaya Kumari Kattamanchi ◽  
Naresh Krishna Vissa ◽  
Hari Prasad Dasari ◽  
Vijaya Bhaskara Rao Sarangam

2019 ◽  
Vol 145 (724) ◽  
pp. 3320-3332 ◽  
Author(s):  
Nanda Kishore Reddy Busireddy ◽  
Kumar Ankur ◽  
Krishna Kishore Osuri ◽  
Sanikommu Sivareddy ◽  
Dev Niyogi

Sign in / Sign up

Export Citation Format

Share Document