scholarly journals Dynamical-Empirical forecast for the Indian monsoon rainfall using the NCEP Coupled Modelling System – Application for real time monsoon forecast

MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 433-448
Author(s):  
D.R. PATTANAIK ◽  
AJIT TYAGI ◽  
ARUN KUMAR

The performance of the National Centre for Environmental Prediction’s (NCEP) operational coupled modeling system known as the Climate Forecast System (CFS) is evaluated for the prediction of all India summer monsoon rainfall (AISMR) during June to September (JJAS). The evaluation is based on the hindcast initialized during March, April and May with 15 ensemble members each for 25 years period from 1981 to 2005.The CFS’s hindcast climatology during JJAS of March (lag-3), April (lag-2) and May (lag-1) initial conditions show mostly an identical pattern of rainfall similar to that of observed climatology with both the rainfall maxima (over the west-coast of India and over the head Bay of Bengal region) well captured, with a signification correlation coefficient between the forecast and observed climatology over the Indian monsoon region (bounded by 50°E-110°E and 10°S-35°N) covering Indian land mass and adjoining oceanic region. Although the CFS forecast rainfall is overestimated over the Indian monsoon region, the land only rainfall amount is underestimated compared to observation. The skill of the prediction of monsoon rainfall over the Indian land mass is found to be relatively weak, although it is significant at 95% with a correlation coefficient (CC) of 0.44 with April ensembles.By using CFS predicted JJAS rainfall over the regions of significant CCs, a hybrid dynamical-empirical model is developed for the real time prediction of AISMR, whose skill is found to be much higher (CC significant above 99% level) than the raw CFS forecasts. The dynamical-empirical hybrid forecast applied on real time for 2009 and 2010 monsoons are found to be much closer to the observed AISMR. Thus, when the hybrid model is used there is a correction not only to the sign of the actual forecast as in the case of 2009 monsoon but also to its magnitude and hence can be used as a better tool for the real time prediction of AISMR.

2021 ◽  
Author(s):  
Xinxin Tang ◽  
Jianping Li ◽  
Huqiang Zhang ◽  
Sen Zhao

Abstract Compared with Global Atmosphere 6 (GA6) of the UK Met Office Unified Model (UM), the dry bias over the Indian monsoon region in Global Atmosphere 7 (GA7) is significantly reduced. However, the physical processes controlling how this reduced dry bias in India influences rainfall teleconnections in the extratropics remain unclear. Thus, in this study, we use Rossby wave tracing in a horizontally nonuniform background flow to investigate how the improved simulation of monsoon rainfall in GA7 compared with GA6 affects extratropical rainfall teleconnections. We find that wave rays emanating from the upper troposphere in the Indian monsoon region first propagate westward, then divide into the Northern Hemisphere (NH) subtropical westerlies over Asia and the Southern Hemisphere (SH) subtropical westerlies. The wave ray trajectories in GA7 in years of strong Indian summer monsoon rainfall (ISMR) are closer to observations than those in GA6. We also find that the upper tropospheric meridional winds over the South Asian monsoon region and western Tibetan Plateau are much better simulated in GA7 than in GA6 owning to the improvement of ISMR and South Asian High (SAH), which leads to a more realistic simulation of the wave rays in GA7. The better simulated circulation teleconnections in GA7 then modulate the vertical motion and moisture transport, and hence affect extratropical rainfall anomalies in the NH and SH. This paper provides new insights for the assessment of tropical–extratropical teleconnections in models.


2009 ◽  
Vol 27 (9) ◽  
pp. 3691-3703 ◽  
Author(s):  
R. Gautam ◽  
N. C. Hsu ◽  
K.-M. Lau ◽  
M. Kafatos

Abstract. Aerosol solar absorption over the Indian monsoon region has a potential role of modulating the monsoon circulation and rainfall distribution as suggested by recent studies based on model simulations. Prior to the onset of the monsoon, northern India is influenced by significant dust transport that constitutes the bulk of the regional aerosol loading over the Gangetic-Himalayan region. In this paper, a multi-sensor characterization of the increasing pre-monsoon aerosol loading over northern India, in terms of their spatial, temporal and vertical distribution is presented. Aerosol transport from the northwestern arid regions into the Indo-Gangetic Plains and over the foothills of the Himalayas is found to be vertically extended to elevated altitudes (up to 5 km) as observed from the space-borne lidar measurements (CALIPSO). In relation with the enhanced pre-monsoon aerosol loading and the associated solar absorption effects on tropospheric temperature anomalies, this paper investigates the monsoon rainfall variability over India in recent past decades from an observational viewpoint. It is found that the early summer monsoon rainfall over India is on the rise since 1950s, as indicated by historical rainfall data, with over 20% increase for the period 1950–2004. This large sustained increase in the early summer rainfall is led by the observed strengthening of the pre-monsoon tropospheric land-sea thermal gradient over the Indian monsoon region as indicated by microwave satellite measurements (MSU) of tropospheric temperatures from 1979–2007. Combined analysis of changes in tropospheric temperatures and summer monsoon rainfall in the past three decades, suggest a future possibility of an emerging rainfall pattern of a wetter monsoon over South Asia in early summer followed by a drier period.


2017 ◽  
Vol 17 (1) ◽  
pp. 531-549 ◽  
Author(s):  
Sanjay Kumar Mehta ◽  
Madineni Venkat Ratnam ◽  
Sukumarapillai V. Sunilkumar ◽  
Daggumati Narayana Rao ◽  
Boddapaty V. Krishna Murthy

Abstract. The diurnal variation of atmospheric boundary layer (ABL) height is studied using high-resolution radiosonde observations available at 3 h intervals for 3 days continuously from 34 intensive campaigns conducted during the period December 2010–March 2014 over a tropical station Gadanki (13.5° N, 79.2° E; 375 m), in the Indian monsoon region. The heights of the ABL during the different stages of its diurnal evolution, namely, the convective boundary layer (CBL), the stable boundary layer (SBL), and the residual layer (RL) are obtained to study the diurnal variabilities. A clear diurnal variation is observed in 9 campaigns out of the 34 campaigns. In 7 campaigns the SBL did not form in the entire day and in the remaining 18 campaigns the SBL formed intermittently. The SBL forms for 33–55 % of the time during nighttime and 9 and 25 % during the evening and morning hours, respectively. The mean SBL height is within 0.3 km above the surface which increases slightly just after midnight (02:00 IST) and remains almost constant until the morning. The mean CBL height is within 3.0 km above the surface, which generally increases from morning to evening. The mean RL height is within 2 km above the surface which generally decreases slowly as the night progresses. The diurnal variation of the ABL height over the Indian region is stronger during the pre-monsoon and weaker during winter season. The CBL is higher during the summer monsoon and lower during the winter season while the RL is higher during the winter season and lower during the summer season. During all the seasons, the ABL height peaks during the afternoon (∼ 14:00 IST) and remains elevated until evening (∼ 17:00 IST). The ABL suddenly collapses at 20:00 IST and increases slightly in the night. Interestingly, it is found that the low level clouds have an effect on the ABL height variability, but the deep convective clouds do not. The lifting condensation level (LCL) is generally found to occur below the ABL for the majority of the database and they are randomly related.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Sayim Gokyar ◽  
Fraser J. L. Robb ◽  
Wolfgang Kainz ◽  
Akshay Chaudhari ◽  
Simone Angela Winkler

2018 ◽  
Vol 5 (1) ◽  
Author(s):  
H. P. Nayak ◽  
K. K. Osuri ◽  
Palash Sinha ◽  
Raghu Nadimpalli ◽  
U. C. Mohanty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document