scholarly journals Utilization of categorical and continuous combination for wave model verification

MAUSAM ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 617-624
Author(s):  
SUBEKTI MUJIASIH ◽  
DANANGEKO NURYANTO
2019 ◽  
Vol 36 (10) ◽  
pp. 1933-1944 ◽  
Author(s):  
Haoyu Jiang

AbstractNumerical wave models can output partitioned wave parameters at each grid point using a spectral partitioning technique. Because these wave partitions are usually organized according to the magnitude of their wave energy without considering the coherence of wave parameters in space, it can be difficult to observe the spatial distributions of wave field features from these outputs. In this study, an approach for spatially tracking coherent wave events (which means a cluster of partitions originating from the same meteorological event) from partitioned numerical wave model outputs is presented to solve this problem. First, an efficient traverse algorithm applicable for different types of grids, termed breadth-first search, is employed to track wave events using the continuity of wave parameters. Second, to reduce the impact of the garden sprinkler effect on tracking, tracked wave events are merged if their boundary outlines and wave parameters on these boundaries are both in good agreement. Partitioned wave information from the Integrated Ocean Waves for Geophysical and other Applications dataset is used to test the performance of this spatial tracking approach. The test results indicate that this approach is able to capture the primary features of partitioned wave fields, demonstrating its potential for wave data analysis, model verification, and data assimilation.


2016 ◽  
Author(s):  
Cordula Berkenbrink ◽  
Luise Hentze ◽  
Andreas Wurpts

Abstract. The design height of coastal protection structures in Lower Saxony / Germany is determined by the design water level and the corresponding wave run up. For the calculation of these parameters several mathematical models are used which need to be verified for the conditions at the East Frisian Wadden Sea area. For this issue a wave measuring programme is operationally run, which includes various measurement locations and devices around the islands Norderney and Juist. The measurements are continuously extended and adapted in order to improve models and measurements. This paper shows a comparison between measured and calculated data for the storm surge of the 10.–11.01.2015 incorporating to new wave and water level gauges operated within COSYNA as well as a second research project dealing with wave attenuation behind barrier islands. Water levels within the investigation area were calculated by hydrodynamic models driven with a wind field originating from weather forecast and compared to water level measurements. The corresponding wave energy field was calculated by means of a third generation wave model and results compared to measurements of several devices located around the barrier Islands. The aim of the study shown here is to give a brief overview of possible error sources for model-data as well as data-data comparisons.


2001 ◽  
Author(s):  
Denis Morichon ◽  
Barbara Boczar-Karakiewicz ◽  
Edward B. Thornton
Keyword(s):  

2017 ◽  
Vol 13 (1) ◽  
pp. 4522-4534
Author(s):  
Armando Tomás Canero

This paper presents sound propagation based on a transverse wave model which does not collide with the interpretation of physical events based on the longitudinal wave model, but responds to the correspondence principle and allows interpreting a significant number of scientific experiments that do not follow the longitudinal wave model. Among the problems that are solved are: the interpretation of the location of nodes and antinodes in a Kundt tube of classical mechanics, the traslation of phonons in the vacuum interparticle of quantum mechanics and gravitational waves in relativistic mechanics.


Author(s):  
Fedor Gippius ◽  
Fedor Gippius ◽  
Stanislav Myslenkov ◽  
Stanislav Myslenkov ◽  
Elena Stoliarova ◽  
...  

This study is focused on the alterations and typical features of the wind wave climate of the Black Sea’s coastal waters since 1979 till nowadays. Wind wave parameters were calculated by means of the 3rd-generation numerical spectral wind wave model SWAN, which is widely used on various spatial scales – both coastal waters and open seas. Data on wind speed and direction from the NCEP CFSR reanalysis were used as forcing. The computations were performed on an unstructured computational grid with cell size depending on the distance from the shoreline. Modeling results were applied to evaluate the main characteristics of the wind wave in various coastal areas of the sea.


Sign in / Sign up

Export Citation Format

Share Document