scholarly journals Monitoring of tropical cyclone formation, growth and dissipation by using SAPHIR sensor

MAUSAM ◽  
2021 ◽  
Vol 69 (2) ◽  
pp. 209-218
Author(s):  
M. P. VASUDHA. ◽  
G. RAJU
2013 ◽  
Vol 7 (1) ◽  
pp. 37-50
Author(s):  
Masanori Yamasaki

This paper describes results from numerical experiments which have been made toward a better understanding of tropical cyclone formation. This study uses a nonhydrostatic version of the author’s mesoscale-convection-resolving model that was developed in the 1980s to improve paramerization schemes of moist convection. In this study the horizontal grid size is taken to be 20 km in an area of 6,000 km x 3,000 km, and a non-uniform coarse grid is used in two areas to its north and south. Results from two numerical experiments are presented; one (case 1) without any environmental flow, and the other (case 2) with an easterly flow without low-level vertical shear. Three circular buoyancy perturbations are placed in the west-east direction at the initial time. Convection is initiated in the imposed latently unstable (positive CAPE) area. In both cases, a vortex with a pressure low is formed, and two band-shaped convective systems are formed to the north and the south of the vortex center. The vortex and two convective systems are oriented in the westsouthwest – eastnortheast direction, and their horizontal scales are nearly 2,000 km. In case 1, the band-shaped convective system on the southern side is stronger, and winds are stronger just to its south. In contrast, in case 2, the northern convective system is stronger, and winds are stronger just to its north. Therefore, the distributions of the equivalent potential temperature in the boundary layer and latent instability (positive buoyancy of the rising air) are also quite different between cases 1 and 2. The TC formation processes in these different cases are discussed, with an emphasis on the importance of examining the time change of latent instability field.


2013 ◽  
Vol 70 (4) ◽  
pp. 1023-1034 ◽  
Author(s):  
Liguang Wu ◽  
Huijun Zong ◽  
Jia Liang

Abstract Large-scale monsoon gyres and the involved tropical cyclone formation over the western North Pacific have been documented in previous studies. The aim of this study is to understand how monsoon gyres affect tropical cyclone formation. An observational study is conducted on monsoon gyres during the period 2000–10, with a focus on their structures and the associated tropical cyclone formation. A total of 37 monsoon gyres are identified in May–October during 2000–10, among which 31 monsoon gyres are accompanied with the formation of 42 tropical cyclones, accounting for 19.8% of the total tropical cyclone formation. Monsoon gyres are generally located on the poleward side of the composited monsoon trough with a peak occurrence in August–October. Extending about 1000 km outward from the center at lower levels, the cyclonic circulation of the composited monsoon gyre shrinks with height and is replaced with negative relative vorticity above 200 hPa. The maximum winds of the composited monsoon gyre appear 500–800 km away from the gyre center with a magnitude of 6–10 m s−1 at 850 hPa. In agreement with previous studies, the composited monsoon gyre shows enhanced southwesterly flow and convection on the south-southeastern side. Most of the tropical cyclones associated with monsoon gyres are found to form near the centers of monsoon gyres and the northeastern end of the enhanced southwesterly flows, accompanying relatively weak vertical wind shear.


2022 ◽  
Vol 266 ◽  
pp. 105952
Author(s):  
Xi Cao ◽  
Renguang Wu ◽  
Jing Xu ◽  
Yifeng Dai ◽  
Mingyu Bi ◽  
...  

2012 ◽  
Vol 140 (11) ◽  
pp. 3634-3652 ◽  
Author(s):  
Bryce Tyner ◽  
Anantha Aiyyer

Abstract The evolution of African easterly waves (AEWs) leading to tropical cyclones (TCs) in the Atlantic during 2000–08 is examined from isentropic potential vorticity (PV) and Lagrangian streamline perspectives. Tropical cyclone formation is commonly preceded by axisymmetrization of PV, scale contraction of the wave, and formation of a closed circulation within the wave. In these cases, PV associated with the synoptic-scale wave is irreversibly deformed and subsumed within the developing vortex. Less commonly, filamentation of the PV leads to separation and independent propagation of the wave and the TC vortex. In an example presented here, the remnant wave with a closed circulation persisted for several days after separation from the TC. A second TC did not result, consistent with several past studies that show that a midtropospheric closed gyre is not sufficient for TC genesis. Sometimes, an AEW and a weak TC remain coupled for a few days, followed by the dissipation of the TC and the continued propagation of the wave. Merger of tropical and extratropical PV anomalies is also often observed and likely helps maintain some waves. The results of this study are broadly consistent with recent Lagrangian analyses of AEW evolution during TC genesis.


Sign in / Sign up

Export Citation Format

Share Document