scholarly journals HOT WEATHER SEASON (March-May 2019)†

MAUSAM ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 329-356
Author(s):  
Kashyapi Anupam ◽  
Abhang P R ◽  
Natu J. C. ◽  
Shripad V. K.

The first cyclonic storm of the season, Extremely Severe Cyclonic Storm (ESCS “Fani” 26th April - 4th May, 2019) formed over the Bay of Bengal and crossed the Odisha coast close to Puri. Besides this ESCS, one short lived low pressure area formed on 30th May over southwest Arabian Sea off Somalia coast which dissipated on 31st May.

Author(s):  
Ajit Tyagi ◽  
M. Mohapatra ◽  
B. K. Bandyopadhyay ◽  
Charan Singh ◽  
Naresh Kumar

2014 ◽  
Vol 71 (5) ◽  
Author(s):  
N. S. Sabarudin ◽  
M. L. R. Sarker

Monitoring ocean primary productivity especially Chlorophyll-a (Chl-a) concentration is important as it contributes to the carbon cycle, global climate change and ocean health study.  This study aims to examine the effects of cyclone events on the ocean productivity in the Bay of Bengal (BOB) considering its importance on global climate change.  Level 2 SeaWiFS daily data from 2001 to 2010 were used to determine Chl-a concentration and data from the Indian Meteorological Department (IMD) were used to get information and locations of the cyclone events.  Variation of Chl-a concentration was determined from the Chl-a concentration maps (pre-, during, and post-cyclone) using several transect lines parallel to the cyclone passages.  Results indicated that there is a relationship between the variation of Chl-a concentration and the cyclone events at the BOB but the effect is varied according to the type of cyclone where very severe cyclonic storm (VSCS) has higher impact on Chl-a concentration compared to cyclonic storm (CS) and severe cyclonic storm (SCS).  In most cases, Chl-a concentration was increased right after the cyclone event and the influence was observed over a wide area surrounding the cyclone passage.Monitoring ocean primary productivity especially Chlorophyll-a (Chl-a) concentration is important as it contributes to the carbon cycle, global climate change and ocean health study.  This study aims to examine the effects of cyclone events on the ocean productivity in the Bay of Bengal (BOB) considering its importance on global climate change.  Level 2 SeaWiFS daily data from 2001 to 2010 were used to determine Chl-a concentration and data from the Indian Meteorological Department (IMD) were used to get information and locations of the cyclone events.  Variation of Chl-a concentration was determined from the Chl-a concentration maps (pre-, during, and post-cyclone) using several transect lines parallel to the cyclone passages.  Results indicated that there is a relationship between the variation of Chl-a concentration and the cyclone events at the BOB but the effect is varied according to the type of cyclone where very severe cyclonic storm (VSCS) has higher impact on Chl-a concentration compared to cyclonic storm (CS) and severe cyclonic storm (SCS).  In most cases, Chl-a concentration was increased right after the cyclone event and the influence was observed over a wide area surrounding the cyclone passage.Monitoring ocean primary productivity especially Chlorophyll-a (Chl-a) concentration is important as it contributes to the carbon cycle, global climate change and ocean health study.  This study aims to examine the effects of cyclone events on the ocean productivity in the Bay of Bengal (BOB) considering its importance on global climate change.  Level 2 SeaWiFS daily data from 2001 to 2010 were used to determine Chl-a concentration and data from the Indian Meteorological Department (IMD) were used to get information and locations of the cyclone events.  Variation of Chl-a concentration was determined from the Chl-a concentration maps (pre-, during, and post-cyclone) using several transect lines parallel to the cyclone passages.  Results indicated that there is a relationship between the variation of Chl-a concentration and the cyclone events at the BOB but the effect is varied according to the type of cyclone where very severe cyclonic storm (VSCS) has higher impact on Chl-a concentration compared to cyclonic storm (CS) and severe cyclonic storm (SCS).  In most cases, Chl-a concentration was increased right after the cyclone event and the influence was observed over a wide area surrounding the cyclone passage.


2020 ◽  
Vol 2 (11) ◽  
Author(s):  
S. Roshny ◽  
D. Bala Subrahamanyam ◽  
T. J. Anurose ◽  
Radhika Ramachandran

2019 ◽  
Vol 102 (2) ◽  
pp. 633-644
Author(s):  
Pratap Kumar Mohanty ◽  
Prabin Kumar Kar ◽  
Balaji Behera

MAUSAM ◽  
2022 ◽  
Vol 64 (1) ◽  
pp. 193-202
Author(s):  
S.K. DUBE ◽  
JISMY POULOSE ◽  
A.D. ADRAO

tc Hkh m".kdfVca/kh; pØokr vkrk gS rc Hkkjr vkSj blds fudVorhZ {ks=ksa esa rwQkuh leqnzh rjaxksa dh vkinkvksa ds dkj.k tku vkSj eky dh Hkkjh gkfu] rVh; <k¡pksa dh {kfr vkSj —f"k dks gkfu igq¡prh gSA uoEcj 1970 esa caxykns’k ¼igys iwohZ ikfdLrku½ esa vk, ,d vR;ar iapaM pØokr dh otg ls yxHkx 3]00]000 yksxksa dh tkus xbZaA uoEcj 1977 esa vkU/kz esa vk, pØokr us Hkkjr ds iwohZ rV dks rgl ugl dj fn;k ftlesa yxHkx 10]000 yksxksa dh tkus xbZaA vDrwcj 1999 esa Hkkjr ds mM+hlk ds rV ij ,d izpaM pØokrh rwQku vk;k ftlls ml {ks= esa laifRr dh vR;kf/kd gkfu gksus ds vfrfjDr 15]000 ls Hkh vf/kd yksxksa dh tkus xbZaA gky gh esa ebZ 2008 esa vk, pØokr uxhZl ls E;kaekj esa yxHk.k 1]40]000 yksxksa dh tkusa xbZa vkSj laifRr dk vR;f/kd ek=k esa uqdlku gqvkA ;s fo’o dh lcls cM+h ekuoh; vkink;sa eq[;r% m".kdfVca/kh; pØokrksa ls lac) gaS o leqnzh rwQkuh rjaxksa ls izR;{k:i  ls tqMh gSA vr% ml {ks= esa laf{kIr iwokZuqeku vkSj leqnzh rwQkuh rjaxksa dh iwoZ psrkouh nsus dk izko/kku ml {ks= ds fgr esa gksrk gSA bl 'kks/k i= dk eq[; mÌs’; caxky dh [kkM+h vkSj vjc lkxj esa mBus okyh leqnzh rwQkuh rjaxksa dk iwokZuqeku djus ds fy, gky gh esa fodflr fd, x, ekWMyksa dks izdk’k esa ykuk gSA bl 'kks/k&i= esa o"kZ 2008 ls 2011 ds nkSjku caxky dh [kkM+h esa cus izpaM pØokrksa ls tqM+h leqnzh rjaxksa dk iwokZuqeku [email protected] djus esa fun’kZ ds fu"iknu dk Hkh mYys[k fd;k x;k gSA Storm surge disasters cause heavy loss of life and property, damage to the coastal structures and the losses of agriculture in India and its neighborhood whenever a tropical cyclone approaches. About 3,00,000 lives were lost in one of the most severe cyclone that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated the eastern coast of India, killing about 10,000 persons in November 1977. Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15000 people besides enormous loss to the property in the region. More recently the Nargis cyclone of May 2008 killed about 1,40,000 people in Myanmar as well as caused enormous property damage. These and most of the world's greatest human disasters associated with the tropical cyclones have been directly attributed to storm surges. Thus, provision of precise prediction and warning of storm surges is of great interest in the region. The main objective of the present paper is to highlight the recent developments in storm surge prediction model for the Bay of Bengal and the Arabian Sea. Paper also describes the performance of the model in forecasting/simulating the surges associated with severe cyclones formed in the Bay of Bengal during 2008 to 2011.  


MAUSAM ◽  
2021 ◽  
Vol 60 (1) ◽  
pp. 25-38
Author(s):  
M. MOHAPATRA ◽  
U. C. MOHANTY

A study has been undertaken to find out different characteristics like frequency, intensity, movement, region of occurrence etc. of low pressure systems (LPS) including low, depression and cyclonic storm etc. developing over Orissa and neighbouring sea and land regions during excess and deficient monsoon  rainfall months (June – September) over Orissa. The study is based on data of 20 years (1980-1999). The principal objective of this study is to find out the contribution of LPS to extreme monsoon rainfall activity over Orissa.   The number of LPS days rather than frequency of formation of LPS over different regions better explain the excess and deficient rainfall over Orissa. The excess rainfall over Orissa during June is not significantly related with the number of LPS days. Significantly less than normal number of LPS days over northwest (NW) Bay of Bengal and Gangetic West Bengal (GWB) and higher number of LPS days over west central (WC) Bay off north coastal Andhra Pradesh (NCAP) cause deficient rainfall over Orissa during June. While significantly higher than normal number of LPS days over NW Bay and Orissa leads to excess rainfall during July, less than normal number of LPS days over WC Bay off NCAP is associated with excess rainfall during August. The less number of LPS days over Orissa due to less frequent movement of LPS across Orissa from the Bay of Bengal leads to deficient rainfall over Orissa during both July and August. Significantly higher/less than normal number of LPS days over NW Bay leads to excess/deficient rainfall over Orissa during September.


2021 ◽  
Vol 247 ◽  
pp. 105222
Author(s):  
Vivek Singh ◽  
Rakesh Teja Konduru ◽  
Atul Kumar Srivastava ◽  
I.M. Momin ◽  
Sushant Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document