scholarly journals Desempenho de misturas asfálticas recicladas mornas e sua influência no dimensionamento do revestimento asfáltico

2020 ◽  
Vol 41 (2) ◽  
pp. 157
Author(s):  
Fernanda Gadler ◽  
Leonardo Fagundes Rosemback Miranda ◽  
Joe Villena

The main purpose is to evaluate the performance of asphalt regarding resilient modulus and fatigue curve.The asphalt was produced with two wastes, reclaimed asphalt pavement (RAP) and recycled concrete aggregate (RCA), using the technique of warm mixtures. The evaluation includes, based on these parameters, the thickness differences in the design of asphalt layer for each mixture. Five asphalt mixtures were produced with incorporation of RAP and RCA, in different gradation fractions (fine and/or course), without adding any natural aggregate. In view of the aim of the article, the mixtures were evaluated through tests of resilient modulus and fatigue life, in order to support the design, establishing the necessary thickness to meet traffic demands of each mixture. The design was performed using MeDiNa software. Among all results, it is highlighted that asphalt binder content is the component that exerts the greatest influence on the resilient modulus of the mixtures. As for fatigue, in addition to the binder content, the possible anchoring of the asphalt binder in the pores of the RCA may have favored the performance of the GARC_MRAP mixture. Still, all mixtures with RAP, both in fine or course fraction, resulted in lower coating thicknesses compared to the REF, for the same load request, with better performance of the GARC_MRAP mixture produced with 100 % waste material and incorporation of only 3.1 % neat binder.

2019 ◽  
Vol 262 ◽  
pp. 05002 ◽  
Author(s):  
Przemysław Buczyński ◽  
Marek Iwański

This article presents research on recycled cold mix with foamed bitumen (MCAS) containing recycled concrete aggregate. The primary concept driving this research was to determine if recycled concrete aggregate (RC) could be used as a substitute for reclaimed asphalt pavement (RAP). Recycled concrete aggregate was used in the MCAS mix in amounts ranging from 20%, 60% and 80%. The reference mix was the MCAS mix containing 50% reclaimed asphalt pavement (RAP) and virgin aggregate. Identical 0/31.5-mm continuously graded dolomite virgin aggregate was used in all mixes. 2.5% foamed bitumen (FB) and 2.0% CEM I 42.5R Portland cement (PC) were used to increase the cohesion of the mineral mix. Foamed bitumen was produced from 50/70 penetration paving bitumen. The behaviour of the recycled base course was tested in the range of cyclic sinusoidal strain with amplitude εo = 25–50 με. The tests were carried out in the (-7°C, 5°C, 13°C, 25°C, 40°C) temperature and (0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz, 20 Hz) loading time range. The complex modulus was tested in a direct tension-compression test on cylindrical samples (DTC-CY) in accordance with EN 12697-26. The results of the tests were used to assess the complex modulus (E*), phase angle (φ) and complex modulus components (E1) and (E2).Tests of the mixes indicate that recycled concrete aggregate can be used in recycled cold mixes in amounts of up to 80%. Increasing the amount of recycled concrete aggregate does not cause excessive stiffness of the recycled mix in comparison with the reference mix. The tests did not demonstrate a significant difference in terms of the phase angle (φ), which indicates a similar content of the viscous part and elastic part in the obtained complex modulus for the reference mix (RAP + MCAS) and the mix containing recycled concrete aggregate (RC + MCAS).


2013 ◽  
Vol 161 ◽  
pp. 44-54 ◽  
Author(s):  
Harianto Rahardjo ◽  
Alfrendo Satyanaga ◽  
Eng-Choon Leong ◽  
Jing-Yuan Wang

2010 ◽  
Vol 37 (11) ◽  
pp. 1414-1422 ◽  
Author(s):  
Feipeng Xiao ◽  
Serji Amirkhanian ◽  
Bradley Putman ◽  
Junan Shen

An improved understanding of the rheological and engineering properties of a rubberized asphalt concrete (RAC) pavement that contains reclaimed asphalt pavement (RAP) is important to stimulating the use of these recycled and by-product materials in asphalt mixtures. The uses of RAP and rubberized asphalt in the past have proven to be economical, environmentally sound, and effective in hot mix asphalt (HMA) mixtures across the US and the world. The objective of this research was to investigate the binder and mixture performance characteristics of these modified asphalt mixtures through a series of laboratory tests to evaluate properties such as the fatigue factor G*sinδ, rutting resistance, resilient modulus, and fatigue life. The results of the experiments indicated that the use of RAP and crumb rubber in HMA can effectively improve the engineering properties of these mixes.


2017 ◽  
Vol 730 ◽  
pp. 380-388 ◽  
Author(s):  
Michal Varaus ◽  
Tomas Koudelka ◽  
Pavel Sperka

As the amount of reclaimed asphalt pavement (RAP) material used in asphalt mixtures has increased recently, it is vital to address problems regarding aged binder incorporated in RAP. Asphalt binder hardens during its production process as well as during service life of pavements. External influences such as oxygen and ultraviolet radiation affect greatly bitumen characteristics. Thanks to adding rejuvenating agents, the original binder properties should be recovered and resulting asphalt binder parameters should become equal to those measured upon the reference material. In this study, four different rejuvenator agents and one neat soft binder were employed to rejuvenate the artificially aged binder by a complete blending between both constituents. Thereafter, empirical as well as performance based binder properties were examined with a dynamic shear rheometer (DSR) and with a bending beam rheometer (BBR). Three different dosages of each rejuvenator were added to evaluate the required amount for the original binder properties to be restored. Moreover, the softening efficiency of each agent was assessed by means of the Ring and Ball test. Finally, the optimum amount of each rejuvenator needed for the blend to achieve the target specification was determined. It can be concluded that the rejuvenators affect binder properties greatly, and mainly in a positive way. However, the data also indicate significant discrepancies between the types of the rejuvenator.


2021 ◽  
Vol 904 ◽  
pp. 458-463
Author(s):  
Jiří Sachr ◽  
Ondrej Dasek ◽  
Petr Hyzl

The work deals with the detection of presence of RAP (reclaimed asphalt pavement) in asphalt mixtures. Information about the presence of RAP in an asphalt layer can be technically advantageous, for example, when planning further recycling of the layer. The method described in the paper can also be used to verify the success of a treatment of an aged binder in RAP, which is dosed in the production of new asphalt mixtures. The asphalt binder was obtained by a method of successive extraction from asphalt mixtures with different RAP content. Basic empirical tests of the asphalt binder (needle penetration and softening point) were chosen to detect the presence of RAP. The complex shear modulus G* was further determined on the extracted binders using a dynamic shear rheometer (DSR).


Sign in / Sign up

Export Citation Format

Share Document