A RARE CAUSE OF NEONATAL HYPOTONIA IN INFANTS; ZELLWEGER SYNDROME

2017 ◽  
pp. 1
Author(s):  
ayse ozcelik ◽  
peren perk ◽  
mehmet keskin ◽  
beltinge kilic ◽  
ercan sivasli
Keyword(s):  
1993 ◽  
Vol 34 (7) ◽  
pp. 1107-1113
Author(s):  
U Diczfalusy ◽  
O Vesterqvist ◽  
BF Kase ◽  
E Lund ◽  
SE Alexson

1987 ◽  
Vol 923 (3) ◽  
pp. 478-482 ◽  
Author(s):  
Ronald J.A. Wanders ◽  
Anneke Strijland ◽  
Carlo W.T. van Roermund ◽  
Henk van den Bosch ◽  
Ruud B.H. Schutgens ◽  
...  

2001 ◽  
Vol 357 (2) ◽  
pp. 417-426 ◽  
Author(s):  
Shigehiko TAMURA ◽  
Naomi MATSUMOTO ◽  
Atsushi IMAMURA ◽  
Nobuyuki SHIMOZAWA ◽  
Yasuyuki SUZUKI ◽  
...  

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS), neonatal adrenoleucodystrophy (NALD) and infantile Refsum disease (IRD), are fatal autosomal recessive diseases caused by impaired peroxisome biogenesis, of which 12 genotypes have been reported. ZS patients manifest the severest clinical and biochemical abnormalities, whereas those with NALD and IRD show less severity and the mildest features respectively. We have reported previously that temperature-sensitive peroxisome assembly is responsible for the mildness of the clinical features of IRD. PEX1 is the causative gene for PBDs of complementation group E (CG-E, CG1 in the U.S.A. and Europe), the PBDs of highest incidence, encoding the peroxin Pex1p of the AAA ATPase family. It has been also reported that Pex1p and Pex6p interact with each other. In the present study we investigated phenotype–genotype relationships of CG1 PBDs. Pex1p from IRD such as Pex1p with the most frequently identified mutation at G843D was largely degraded in vivo at 37°C, whereas a normal level of Pex1p was detectable at the permissive temperature. In contrast, PEX1 proteins derived from ZS patients, including proteins with a mutation at L664P or the deletion of residues 634–690, were stably present at both temperatures. Pex1p-G843D interacted with Pex6p at approx. 50% of the level of normal Pex1p, whereas Pex1p from ZS patients mostly showing non-temperature-sensitive peroxisome biogenesis hardly bound to Pex6p. Taking these results together, we consider it most likely that the stability of Pex1p reflects temperature-sensitive peroxisome assembly in IRD fibroblasts. Failure in Pex1p–Pex6p interaction gives rise to more severe abnormalities, such as those manifested by patients with ZS.


1996 ◽  
Vol 16 (5) ◽  
pp. 2527-2536 ◽  
Author(s):  
H R Waterham ◽  
Y de Vries ◽  
K A Russel ◽  
W Xie ◽  
M Veenhuis ◽  
...  

We report the cloning of PER6, a gene essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. The PER6 sequence predicts that its product Per6p is a 52-kDa polypeptide with the cysteine-rich C3HC4 motif. Per6p has significant overall sequence similarity with the human peroxisome assembly factor PAF-1, a protein that is defective in certain patients suffering from the peroxisomal disorder Zellweger syndrome, and with car1, a protein required for peroxisome biogenesis and caryogamy in the filamentous fungus Podospora anserina. In addition, the C3HC4 motif and two of the three membrane-spanning segments predicted for Per6p align with the C3HC4 motifs and the two membrane-spanning segments predicted for PAF-1 and car1. Like PAF-1, Per6p is a peroxisomal integral membrane protein. In methanol- or oleic acid-induced cells of per6 mutants, morphologically recognizable peroxisomes are absent. Instead, peroxisomal remnants are observed. In addition, peroxisomal matrix proteins are synthesized but located in the cytosol. The similarities between Per6p and PAF-1 in amino acid sequence and biochemical properties, and between mutants defective in their respective genes, suggest that Per6p is the putative yeast homolog of PAF-1.


1985 ◽  
Vol 16 (6) ◽  
pp. 610-620 ◽  
Author(s):  
James M. Powers ◽  
Hugo W. Moser ◽  
Ann B. Moser ◽  
Jane K. Upshur ◽  
Barbara F. Bradford ◽  
...  

1999 ◽  
Vol 112 (10) ◽  
pp. 1579-1590 ◽  
Author(s):  
C.C. Chang ◽  
S. South ◽  
D. Warren ◽  
J. Jones ◽  
A.B. Moser ◽  
...  

Zellweger syndrome and related disorders represent a group of lethal, genetically heterogeneous diseases. These peroxisome biogenesis disorders (PBDs) are characterized by defective peroxisomal matrix protein import and comprise at least 10 complementation groups. The genes defective in seven of these groups and more than 90% of PBD patients are now known. Here we examine the distribution of peroxisomal membrane proteins in fibroblasts from PBD patients representing the seven complementation groups for which the mutant gene is known. Peroxisomes were detected in all PBD cells, indicating that the ability to form a minimal peroxisomal structure is not blocked in these mutants. We also observed that peroxisome abundance was reduced fivefold in PBD cells that are defective in the PEX1, PEX5, PEX12, PEX6, PEX10, and PEX2 genes. These cell lines all display a defect in the import of proteins with the type-1 peroxisomal targeting signal (PTS1). In contrast, peroxisome abundance was unaffected in cells that are mutated in PEX7 and are defective only in the import of proteins with the type-2 peroxisomal targeting signal. Interestingly, a fivefold reduction in peroxisome abundance was also observed for cells lacking either of two PTS1-targeted peroxisomal beta-oxidation enzymes, acyl-CoA oxidase and 2-enoyl-CoA hydratase/D-3-hydroxyacyl-CoA dehydrogenase. These results indicate that reduced peroxisome abundance in PBD cells may be caused by their inability to import these PTS1-containing enzymes. Furthermore, the fact that peroxisome abundance is influenced by peroxisomal 105-oxidation activities suggests that there may be metabolic control of peroxisome abundance.


Author(s):  
Dr. Tanmay Khadpe ◽  
◽  
Dr. Alpana Kondekar ◽  
Dr. Varun Anand ◽  
Dr. Radha Ghildiyal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document