scholarly journals Synergic Effect and Kinetic Mechanisms for Co-Pyrolysis of Empty Fruit Bunch and Palm Oil Sludge

2017 ◽  
Vol 78 (1) ◽  
Author(s):  
Yen Yee Chong ◽  
Suchithra Thangalazhy-Gopakumar ◽  
Suyin Gan ◽  
Hoon Kiat Ng ◽  
Lai Yee Lee

The thermochemical behaviour of Co-Pyrolysis between Empty Fruit Bunches (EFB) and Palm Oil Mill Efluent (POME)  sludge were studied using Thermogravimetric Analysis (TGA). EFB, POME sludge, and their blends (EFB : POME sludge of 100:0, 90:10, 75:25, 50:50, 25:75, and 0:100) were studied at different heating rates (5, 10, 20, 30, and 40ºC/min) with nitrogen (N2) purge of 20 ml/min to simulate pyrolysis conditions. All the samples experienced three pyrolysis stages and for each stage, the mechanisms responsible were determined. During co-pyrolysis, a positive synergistic effect was observed in the  experiments, which is a favourable inding. With the increase in POME sludge percentage in the blends, the activation energy for the main decomposition stage (Stage 2) decreased from 89.33 kJ/mol to 63.47 kJ/mol, when the kinetic model was irst order reaction (F1).

Author(s):  
Wai Loan Liew ◽  
Khalida Muda ◽  
Mohd. Azraai Kassim ◽  
Augustine Chioma Affam ◽  
Soh Kheang Loh

Over the decades the palm oil industry has managed some challenging environmental concerns regarding land transformation and degradation, increase in eutrophication, changing habitats of wildlife, pesticides runoff into inland watercourses, and probable climate change. Countries producing palm oil desire to do so in a more sustainable way that will leave the environment evergreen. Therefore this paper aims to encourage sustainable management of agro-industrial waste and its potential in making financial returns from the same waste. Hence, the study was conducted with the participation of seven local palm oil mills having different capacities and operation age. Attention was given to milling waste as they could cause serious environmental menace if unattended to properly. Milling waste includes lignocellulosic palm biomass namely the empty fruit bunches (EFB), oil palm shell (OPS), mesocarp fibres, palm oil mill effluent (POME), and palm oil mill sludge (POMS), as well as solid waste generated from the further processing of these biomass into the palm oil fuel ashes (POFA) and palm oil clinkers (POC). The opportunities available to the Malaysian palm oil industry and the financial benefits which may accrue from waste generated during palm oil production process cannot be over emphasized.


Cerâmica ◽  
2019 ◽  
Vol 65 (375) ◽  
pp. 359-365
Author(s):  
V. A. Coelho ◽  
C. C. Guimarães ◽  
G. G. Doutto ◽  
P. P. Pedra

Abstract Currently, palm oil is a leader in production and consumption among commercial edible oils, with a growing world production that exceeds 66 million tons per year. It is estimated that the generation of residues from the burning of palm oil empty fruit bunches as fuel in the boilers corresponds to 5% in mass of the total of oil extracted. This work evaluated the mechanical properties resulting from the use of the empty fruit bunch ashes as a partial substitute of Portland cement in mortars in different contents in 1:3 and 1:6 mixes. Mortars obtained with the use of ash presented greater deformability, implying greater workability. The results obtained pointed to potential use of the ash as filler in mortars without loss on compressive strength for contents up to 10% in the 1:3 mix and 5% in the 1:6 mix. It was observed an increase in the void index and the water absorption capacity, with a proportional reduction of the flexural strength.


2015 ◽  
Vol 74 (7) ◽  
Author(s):  
Aziatul Niza Sadikin ◽  
Mohd Ghazali Mohd Nawawi ◽  
Norasikin Othman ◽  
Roshafima Rasit Ali ◽  
Umi Aisah Asli

The aim of this research is to evaluate the feasibility of the fibrous media for removal of total suspended solid and oil grease from palm oil mill effluent (POME). Wet lay-up method was adopted for filter fabrication where empty fruit bunches (EFB) were matted together with chitosan in non-woven manner. Chitosan-filled filter media were tested for their ability to reduce Total Suspended Solids (TSS) and Oil & Grease (O&G) from palm oil mill effluent. Filtration process results indicated that chitosan-filled filter media filtration only removed up to 28.14% of TSS and 29.86% of O&G. 


2019 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Zainudin Zainudin ◽  
Abdul Rofik

Palm oil is an export commodity of the plantation sector which began to develop rapidly in East Kalimantan with an area until 2017 reaching 1,192,342 Ha consisting of 284,523 Ha as plasma / smallholder plants, 14,402 Ha owned by SOEs as the core and 893,417 Ha owned by Large Private Plantation.Empty bunches (Tankos) are solid waste that is produced by palm oil mills in the process of managing palm fruit bunches into crude palm oil (CPO). In each processing 1 ton of fruit bunches will produce Tankos as much as 21-23%. Oil palm empty fruit bunches that are not managed properly will become waste that does not provide benefits. Compost technology using a local microorganism starter (MOL) can be used to produce quality organic fertilizer considering the process involves decomposing bacteria of organic ingredients. Compost technology from tankos waste is very possible to be developed, both at the level of farmers and private oil palm companies. This study aim to determine the potential of palm oil mill effluent (POME) as an bioactivator for composting oil palm empty fruit bunches, and to determine the chemical quality of oil palm empty fruit bunch compost with MOL bioactivator liquid waste as organic fertilizer. Through this research, it is expected that the palm oil mill's liquid waste can be utilized as a bioactivator for compost production and can be applied to the production of oil palm empty fruit bunch compost.This research was conducted for one year. The stages of the research are as follows: 1. Chemical analysis of POME waste, 2. Making LM POME, 3. Chemical analysis of LM POME, and 4. Making EFB Compost, and Chemical Analysis of oil palm empty fruit bunch compost. Compost making using randomized block design (RBD) with 5 treatments and 4 replications include: P0 = 0 ml / liter of water, P1 = 100 ml / liter of water, P2 = 300 ml / liter of water, P3 = 600 ml / liter of water, P4 = 900 ml / liter of water.The analysis showed that there was an increase in the chemical properties of POME after becoming an LM POME activator. Increased chemical properties such as phosphorus from 0.01 to 0.02, potassium from 0.19 to 0.27, and organic carbon from 0.90 to 1.30, but some chemical properties such as pH decreased from 7.20 to 3, 37 and nitrogen decreased from 0.37 to 0.05. The EFB compost analysis results showed that the highest pH was p2 with a value of 8.23, the highest organic C at p4 treatment with a value of 57.65, the highest total N at p3 with a value of 1.80, P2O5 the highest total at p3 with a value of 0.64, and the highest total K2O at p4 with a value of 2.68. 


Sign in / Sign up

Export Citation Format

Share Document