A Comparative Study of the Atmospheric Boundary Layer Type in the Local Data Assimilation and Prediction System using the Data of Boseong Standard Weather Observatory

2021 ◽  
Vol 42 (5) ◽  
pp. 504-513
Author(s):  
Sung Eun Hwang ◽  
Byeong-Taek Kim ◽  
Young Tae Lee ◽  
Seung Sook Shin ◽  
Ki Hoon Kim
2021 ◽  
Author(s):  
Tobias Sebastian Finn ◽  
Gernot Geppert ◽  
Felix Ament

Abstract. We revise the potential of assimilating atmospheric boundary layer observations into the soil moisture. Previous studies often stated a negative assimilation impact of boundary layer observations on the soil moisture analysis, but recent developments in physically-consistent hydrological model systems and ensemble-based data assimilation lead to an emerging potential of boundary layer observations for land surface data assimilation. To explore this potential, we perform idealized twin experiments for a seven-day period in Summer 2015 with a coupled atmosphere-land modelling platform. We use TerrSysMP for these limited-area simulations with a horizontal resolution 1.0 km in the land surface component. We assimilate sparse synthetic 2-metre-temperature observations into the land surface component and update the soil moisture with a localized Ensemble Kalman filter. We show a positive assimilation impact of these observations on the soil moisture analysis during day-time and a neutral impact during night. Furthermore, we find that hourly-filtering with a three-dimensional Ensemble Kalman filter results in smaller errors than daily-smoothing with a one-dimensional Simplified Extended Kalman filter, whereas the Ensemble Kalman filter additionally allows us to directly assimilate boundary layer observations without an intermediate optimal interpolation step. We increase the physical consistency in the analysis for the land surface and boundary by updating the atmospheric temperature together with the soil moisture, which as a consequence further reduces errors in the soil moisture analysis. Based on these results, we conclude that we can merge the decoupled data assimilation cycles for the land surface and the atmosphere into one single cycle with hourly-like update steps.


2007 ◽  
Vol 25 ◽  
pp. 49-55 ◽  
Author(s):  
S. Argentini ◽  
I. Pietroni ◽  
G. Mastrantonio ◽  
A. Viola ◽  
S. Zilitinchevich

Sign in / Sign up

Export Citation Format

Share Document