Data assimilation of AVHRR and MODIS data for land base initialization and boundary conditions in the UTC-M atmospheric boundary layer sea-breeze model of Space Coast Florida

2004 ◽  
Author(s):  
Charles R. Bostater, Jr. ◽  
Jerome A. King ◽  
Lisa H. Huddleston ◽  
Luce Bassetti
2007 ◽  
Vol 25 (8) ◽  
pp. 1735-1744 ◽  
Author(s):  
S. H. Franchito ◽  
V. Brahmananda Rao ◽  
T. O. Oda ◽  
J. C. Conforte

Abstract. The effect of coastal upwelling on the evolution of the atmospheric boundary layer (ABL) in Cabo Frio (Brazil) is investigated. For this purpose, radiosounding data collected in two experiments made during the austral summer (upwelling case) and austral winter (no upwelling case) are analysed. The results show that during the austral summer, cold waters that crop up near the Cabo Frio coast favour the formation of an atmospheric stable layer, which persists during the upwelling episode. Due to the low SSTs, the descending branch of the sea-breeze circulation is located close to the coast, inhibiting the development of a mixed layer mainly during the day. At night, with the reduction of the land-sea thermal contrast the descending motion is weaker, allowing a vertical mixing. The stable ABL favours the formation of a low level jet, which may also contribute to the development of a nocturnal atmospheric mixed layer. During the austral winter, due to the higher SSTs observed near the coast, the ABL is less stable compared with that in the austral summer. Due to warming, a mixed layer is observed during the day. The observed vertical profiles of the zonal winds show that the easterlies at low levels are stronger in the austral summer, indicating that the upwelling modulates the sea-breeze signal, thus confirming model simulations.


2020 ◽  
Author(s):  
Eckhard Kadasch ◽  
Matthias Sühring ◽  
Tobias Gronemeier ◽  
Siegfried Raasch

Abstract. In this paper, we present a newly developed mesoscale nesting interface for the PALM model system 6.0, which enables PALM to simulate the atmospheric boundary layer under spatially heterogeneous and non-stationary synoptic conditions. The implemented nesting interface, which is currently tailored to the mesoscale model COSMO, consists of two major parts: (i) the preprocessor INIFOR, which provides initial and time-dependent boundary conditions from mesoscale model output and (ii) PALM's internal routines for reading the provided forcing data and superimposing synthetic turbulence to accelerate the transition to a fully developed turbulent atmospheric boundary layer. We describe in detail the conversion between the sets of prognostic variables, transformations between model coordinate systems, as well as data interpolation onto PALM's grid, which are carried out by INIFOR. Furthermore, we describe PALM's internal usage of the provided forcing data, which besides the temporal interpolation of boundary conditions and removal of any residual divergence includes the generation of stability-dependent synthetic turbulence at the inflow boundaries in order to accelerate the transition from the turbulence-free mesoscale solution to a resolved turbulent flow. We demonstrate and evaluate the nesting interface by means of a semi-idealized benchmark case. We carried out a large-eddy simulation (LES) of an evolving convective boundary layer on a clear-sky spring day. Besides verifying that changes in the inflow conditions enter into and successively propagate through the PALM domain, we focus our analysis on the effectiveness of the synthetic turbulence generation. By analysing various turbulence statistics, we show that the inflow in the present case is fully adjusted after having propagated for about 1.5 eddy turn-over times downstream, which corresponds well to other state-of-the-art methods for turbulence generation. Furthermore, we observe that numerical artefacts in the form of under-resolved convective structures in the mesoscale model enter the PALM domain, biasing the location of the turbulent up- and downdrafts in the LES. With these findings presented, we aim to verify the mesoscale nesting approach implemented in PALM, point out specific shortcomings, and build a baseline for future improvements and developments.


2014 ◽  
Vol 142 (9) ◽  
pp. 3418-3424 ◽  
Author(s):  
M. Inoue ◽  
G. Matheou ◽  
J. Teixeira

An arrangement of a large-eddy simulation (LES) is described that facilitates a spatially developing thermally stratified atmospheric boundary layer (ABL). When the inflow and outflow boundary conditions are specified, the LES of stably stratified ABL turns out to be challenging because spurious reflections of waves at the boundary accumulate inside the domain. To tackle this problem, a fringe method with an auxiliary LES running concurrently is applied to enforce upstream/downstream boundary conditions. An artificial forcing term is applied within a fringe region located at the beginning of the main LES domain in order to ensure statistically stationary inflow boundary conditions. The auxiliary LES, which is horizontally homogeneous in a doubly periodic domain, is used to determine the inflow condition of the main LES domain. The present scheme is used to provide an Eulerian perspective of the stratocumulus to shallow cumulus cloud (Sc–Cu) transition, one of the key cloud regimes over the subtropical ocean. In this study, the transition is triggered by increasing the sea surface temperature (SST) and the LES runs until a statistically steady evolution of the Sc–Cu transition is achieved. The flow statistics are compared with those from a recycling-type method and it is found that the fringe method is more suitable for the current applications.


2007 ◽  
Vol 25 (3) ◽  
pp. 597-622 ◽  
Author(s):  
F. Saïd ◽  
A. Brut ◽  
B. Campistron ◽  
F. Cousin

Abstract. This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL) development during two specific meteorological conditions of the second Intensive Observation Period (IOP). The first situation (IOP2a, from 22 June to 23 June) corresponds to moderate, dry and cold northerly winds (end of Mistral event), coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June). In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.


2021 ◽  
Vol 14 (9) ◽  
pp. 5435-5465
Author(s):  
Eckhard Kadasch ◽  
Matthias Sühring ◽  
Tobias Gronemeier ◽  
Siegfried Raasch

Abstract. In this paper, we present a newly developed mesoscale nesting interface for the PALM model system 6.0, which enables PALM to simulate the atmospheric boundary layer under spatially heterogeneous and non-stationary synoptic conditions. The implemented nesting interface, which is currently tailored to the mesoscale model COSMO, consists of two major parts: (i) the preprocessor INIFOR (initialization and forcing), which provides initial and time-dependent boundary conditions from mesoscale model output, and (ii) PALM's internal routines for reading the provided forcing data and superimposing synthetic turbulence to accelerate the transition to a fully developed turbulent atmospheric boundary layer. We describe in detail the conversion between the sets of prognostic variables, transformations between model coordinate systems, as well as data interpolation onto PALM's grid, which are carried out by INIFOR. Furthermore, we describe PALM's internal usage of the provided forcing data, which, besides the temporal interpolation of boundary conditions and removal of any residual divergence, includes the generation of stability-dependent synthetic turbulence at the inflow boundaries in order to accelerate the transition from the turbulence-free mesoscale solution to a resolved turbulent flow. We demonstrate and evaluate the nesting interface by means of a semi-idealized benchmark case. We carried out a large-eddy simulation (LES) of an evolving convective boundary layer on a clear-sky spring day. Besides verifying that changes in the inflow conditions enter into and successively propagate through the PALM domain, we focus our analysis on the effectiveness of the synthetic turbulence generation. By analysing various turbulence statistics, we show that the inflow in the present case is fully adjusted after having propagated for about two to three eddy-turnover times downstream, which corresponds well to other state-of-the-art methods for turbulence generation. Furthermore, we observe that numerical artefacts in the form of grid-scale convective structures in the mesoscale model enter the PALM domain, biasing the location of the turbulent up- and downdrafts in the LES. With these findings presented, we aim to verify the mesoscale nesting approach implemented in PALM, point out specific shortcomings, and build a baseline for future improvements and developments.


2021 ◽  
Author(s):  
Tobias Sebastian Finn ◽  
Gernot Geppert ◽  
Felix Ament

Abstract. We revise the potential of assimilating atmospheric boundary layer observations into the soil moisture. Previous studies often stated a negative assimilation impact of boundary layer observations on the soil moisture analysis, but recent developments in physically-consistent hydrological model systems and ensemble-based data assimilation lead to an emerging potential of boundary layer observations for land surface data assimilation. To explore this potential, we perform idealized twin experiments for a seven-day period in Summer 2015 with a coupled atmosphere-land modelling platform. We use TerrSysMP for these limited-area simulations with a horizontal resolution 1.0 km in the land surface component. We assimilate sparse synthetic 2-metre-temperature observations into the land surface component and update the soil moisture with a localized Ensemble Kalman filter. We show a positive assimilation impact of these observations on the soil moisture analysis during day-time and a neutral impact during night. Furthermore, we find that hourly-filtering with a three-dimensional Ensemble Kalman filter results in smaller errors than daily-smoothing with a one-dimensional Simplified Extended Kalman filter, whereas the Ensemble Kalman filter additionally allows us to directly assimilate boundary layer observations without an intermediate optimal interpolation step. We increase the physical consistency in the analysis for the land surface and boundary by updating the atmospheric temperature together with the soil moisture, which as a consequence further reduces errors in the soil moisture analysis. Based on these results, we conclude that we can merge the decoupled data assimilation cycles for the land surface and the atmosphere into one single cycle with hourly-like update steps.


2021 ◽  
Author(s):  
Benedikt Seitzer ◽  
Bernd Leitl ◽  
Frank Harms

<p>Large-eddy simulations are increasingly used for studying the atmospheric boundary layer. With increasing computational resources even obstacle-resolving Large-eddy simulations became possible and will be used in urban climate studies more frequently. In these applications, grid sizes are in the order of a few meters. Whereas major urban structures can be resolved in general, details like aerodynamically rough surface structures can not be resolved explicitly. Based on the original fields of application, boundary conditions in Large-eddy simulations were initially formulated for surfaces of homogeneous roughness and for wall-distances much larger than the roughness sublayer height (Hultmark et al., 2013). The height of the roughness sublayer depends on the size of small-scale obstacles present on the surface exposed to the flow (Raupach et al., 1991). Typically, boundary conditions are evaluated between the surface and the first grid level. Thus, grid resolution in obstacle-resolved Large-Eddy simulations should also be a question of scales and therefore has to be chosen carefully (Basu and Lacser, 2017; Maronga et al., 2020). <br />In several wind tunnel experiments presented here, we measured the near-wall influence of differently scaled and shaped objects on a flow and its turbulence characteristics. Experimental setups were replicated numerically using the PALM model (Maronga et al. 2019). In a first, more generic experiment, the flow over horizontally homogeneous surfaces of different roughness was investigated. In a second experiment, the spatial separation of the turbulence scales was investigated in a more complex flow case. These experiments lead to considerations on model grid sizes in urban type Large-eddy simulations. The limitations of interpreting simulation results within the urban canopy layer are highlighted. There is an urgent need to reconsider how near-wall results of urban large-eddy simulations are generated and interpreted in the context of practical applications like flow and transport modelling in urban canopies. <br /><br /><em><strong>References</strong></em><br /><em>Basu, S. and Lacser, A. (2017). A Cautionary Note on the Use of Monin–Obukhov Similarity Theory in Very High-Resolution Large-Eddy Simulations. Boundary-Layer Meteorol, 163(2):351–355.</em></p> <p><em>Hultmark, M., Calaf, M., and Parlange, M. B. (2013). A new wall shearstress model for atmospheric boundary layer simulations. J Atmos Sci,70(11):3460–3470.</em></p> <p><em>Maronga, B., et al. (2020). Overview of the PALM model system 6.0. Geosci Model Dev Discussions, 06(June):1–63.</em></p> <p><em>Maronga, B., Knigge, C., and Raasch, S. (2020). An Improved Surface Boundary Condition for Large-Eddy Simulations Based on Monin–Obukhov Similarity Theory: Evaluation and Consequences forGrid Convergence in Neutral and Stable Conditions. Boundary-Layer Meteorol, 174(2):297–325.</em></p> <p><em>Raupach, M. R., Antonia, R. A., and Rajagopalan, S. (1991). Rough-wall turbulent boundary layers. Appl Mech Rev, 44(1):1–25</em></p>


Sign in / Sign up

Export Citation Format

Share Document