scholarly journals 4G C-Shaped compact microstrip antenna design and production

2017 ◽  
Vol 23 (5) ◽  
pp. 532-535
Author(s):  
Ahmet Hayrettin Yüzer ◽  
Cihat Şeker
2020 ◽  
Vol 14 (2) ◽  
pp. 104-110
Author(s):  
Mustafa Berkan Bicer

In this study, a coplanar waveguide-fed compact microstrip antenna design for applications operating at higher 5G bands was proposed. The antenna with the compact size of 8 x 12.2 mm2 on FR4 substrate, having the dielectric constant of 4.3 and the height of 1.55 mm, was considered. The dimensions of the radiating patch and ground plane were optimized with the use of artificial cooperative search (ACS) algorithm to provide the desired return loss performance of the designed antenna. The performance analysis was done by using full-wave electromagnetic package programs based on the method of moment (MoM) and the finite integration technique (FIT). The 10 dB bandwidth for return loss results obtained with the use of the computation methods show that the proposed antenna performs well for 5G applications operating in the 24.25 – 27.50 GHz, 26.50 – 29.50 GHz, 27.50 – 28.35 GHz and 37 – 40 GHz frequency bands.


Author(s):  
S. Adnan ◽  
R. A. Abd-Alhameed ◽  
H. I. Hraga ◽  
I. T. E. Elfergani ◽  
M. B. Child

This work describes a compact microstrip antenna design for wide bandwidth applications. The proposed work introduces a methodology to improve the bandwidth, as well return loss by the defective ground structure (Extended F-Shape). As communication systems require small size, broadband and multiband frequency antennas, an inset line feed monopoles have to be ensured for fabricating broadband antennas. Intensive investigations are carried out in the proposed work to design a new antenna with broadband and multi-band properties. Simulations are performed by using the Ansoft HFSS Electromagnetic Simulation Software.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Afaz Uddin Ahmed ◽  
M. T. Islam ◽  
Rezaul Azim ◽  
Mahamod Ismail ◽  
Mohd Fais Mansor

A mircostrip antenna is designed for multielement antenna coverage optimization in femtocell network. Interference is the foremost concern for the cellular operator in vast commercial deployments of femtocell. Many techniques in physical, data link and network-layer are analysed and developed to settle down the interference issues. A multielement technique with self-configuration features is analyzed here for coverage optimization of femtocell. It also focuses on the execution of microstrip antenna for multielement configuration. The antenna is designed for LTE Band 7 by using standard FR4 dielectric substrate. The performance of the proposed antenna in the femtocell application is discussed along with results.


Sign in / Sign up

Export Citation Format

Share Document