scholarly journals Stability Indicating RP-HPLC Method for Determination of Valsartan in Pure and Pharmaceutical Formulation

2010 ◽  
Vol 7 (1) ◽  
pp. 246-252 ◽  
Author(s):  
S. K. Patro ◽  
S. K. Kanungo ◽  
V. J. Patro ◽  
N. S. K. Choudhury

A simple, rapid and accurate and stability indicating RP-HPLC method was developed for the determination of valsartan in pure and tablet forms. The method showed a linear response for concentrations in the range of 50-175 µg/mL using 0.01 M NH4H2PO4(pH 3.5) buffer: methanol [50:50] as the mobile phase with detection at 210 nm and a flow rate of 1 mL/min and retention time 11.041 min. The method was statistically validated for accuracy, precision, linearity, ruggedness, robustness, forced degradation, solution stability and selectivity. Quantitative and recovery studies of the dosage form were also carried out and analyzed; the % RSD from recovery studies was found to be less than 1. Due to simplicity, rapidity and accuracy of the method, we believe that the method will be useful for routine quality control analysis.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammad Mojeeb Gulzar Khan ◽  
Mohammad Faizan Saadique Deshmukh ◽  
Sandip Dinkar Firke ◽  
Abdul Talib Abdul Wahab ◽  
Mohan Ganpatrao Kalaskar ◽  
...  

Abstract Background Mifepristone is progestational and glucocorticoid hormone antagonist. The objective of this study is to develop simple and economical stability indicating RP-HPLC method for the determination of mifepristone in bulk and tablet formulation. Result The chromatographic separation was achieved on Qualisil BDS C8 column with mobile phase containing of mixture of Buffer (Potassium dihydrogen ortho phosphate, pH to 3.0 with ortho phosphoric acid) and Organic Solvent (Acetonitrile) 60:40 v/v pumped at flow rate 0.6 mL min−1. The detection of elute was performed using PDA detector at 305 nm. Mifepristone was eluted at 8.67 min. According to international conference on harmonization Q2(R1) guideline, method was validated and shows satisfactory results for accuracy, precision, linearity, ruggedness, robustness, detection limit, quantitation limit. The method indicated to be linear in the series of concentration 3–18 µg mL−1, and correlation coefficient was 0.9997. In acidic, basic, oxidative, thermal, photolytic forced degradation conditions, the peak of degradation product was clearly and well separated from drug peak without any interference in quantitative analysis. This represents stability indicating nature of established method. Conclusion The established RP-HPLC method is simple, accurate, specific, precise, robust, rugged, sensitive, and economical in nature which can be utilized for routine analysis of mifepristone in bulk and pharmaceutical formulation.


Author(s):  
Krishna Kishore Adireddy ◽  
Srinivasa Rao Baratam ◽  
Nagarjuna Hari Pratap S.

A simple, rapid, accurate and precise RP-HPLC method was developed and validated for the determination of Etelcalcetide in bulk and parentral dosage form. Quantification of the drug was achieved on Shimadzu HPLC comprising of LC- 20 AD binary gradient pump, a variable wavelength programmable SPD-20A detector and SCL system controller. C18G column (250 mm x 4.6 mm, 5 μ) as stationary phase with mobile phase consisting of acetonitrile: methanol :water in the ratio of 25: 45 :30 v/v. The method showed a good linear response in the concentration range of 3.75-22.5 μg/ml with correlation coefficient of 0.9999. The flow rate was maintained at 1.0 ml/min and effluents were monitored at 238 nm. The retention time of etelcalcetide was 6.201 min. The method was statistically validated for accuracy, precision, linearity, ruggedness, robustness, solution stability, selectivity and sensitivity. The results obtained in the study were within the limits of ICH guidelines and hence this method can be used for the determination of etelcalcetide in bulk and parentral dosage form.


Author(s):  
Murlidhar V. Zope ◽  
Rahul M. Patel ◽  
Ashwinikumari Patel ◽  
Samir G. Patel

Objective: The objective of the current study was to develop and validate a simple, robust, precise and accurate RP-HPLC (reverse phase-high performance liquid chromatography) method for the quantitative determination of potential degradation products of Difluprednate (DIFL) in the ophthalmic emulsion.Methods: Chromatographic separation was achieved on the YMC pack ODS-AQ (150× 4.6) mm, 3μm column with a mobile phase containing a gradient mixture of mobile phase A (0.02M Ammonium formate buffer pH 4.5 adjusted with formic acid) and Acetonitrile as mobile phase B, at flow rate of 1.5 ml/min and with UV detection at 240 nm.Results: The peak retention time of DIFL was found at about 17.2 min, the RRT of degradation product-1 (DP-1), degradation product-2 (DP-2), and degradation product-3 (DP-3), were found to be about 0.49, 0.65 and 0.79 respectively (calculated with respect to Difluprednate). Stress testing was performed in accordance with an ICH (international council for harmonisation) guideline Q1A (R2) [1]. The method was validated as per ICH guideline Q2 (R1)[2]. The calibration curve was found to be linear in the concentration range of 0.1 to 0.75 µg/ml for Difluprednate, DP-1, DP-2 and DP-3. The LOD (Limit of detection) was found to be 0.1µg/ml and LOQ (Limit of quantification) of 0.15µg/ml for Difluprednate, DP-1, DP-2 and DP-3 respectively. The recovery from LOQ to 150% was within 90-110%. The forced degradation data confirms the stability indicating the nature of the method.Conclusion: A simple, robust, precise and accurate RP-HPLC method for the quantitative determination of potential degradation products of Difluprednate in the ophthalmic emulsion was developed and validated. 


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (08) ◽  
pp. 48-52
Author(s):  
K. P Parekh ◽  
◽  
A. P. Jadhav

A simple, accurate, precise, robust stability indicating RP-HPLC method was developed and validated for simultaneous estimation of berberine and curcumin in an ayurvedic formulation. The two markers were resolved using a C-18 column using as the mobile phase methanol: water (pH 3 adjusted using acetic acid) in the ratio 75:25 V/V at a flow rate of 1mL/min. Retention times of berberine and curcumin were 2.58 ± 0.2 min and 8.5 ± 0.2 min, respectively at 358 nm. Linear response was observed in the concentration range of 2 – 8 ppm for berberine and 5 – 40 ppm for curcumin, with correlation coefficient (r2) of 0.994 and 0.998 for berberine and curcumin, respectively. The developed method was applied for quantitation of markers in marketed and in-house formulations of Gruhadhoomadi Churna. This method can also be used to evaluate formulations containing berberine and curcumin as markers, thus conforming to the need of ensuring quality and safety of herbal medicines.


Author(s):  
Sushil D. Patil ◽  
Pravin B. Shelke ◽  
Priti Aher ◽  
Maswood Ahmed Hafizur Rahman

A simple, rapid, economic, sensitive and precise HPLC method has been developed for the simultaneous determination of Sulphadoxine and Pyrimethamine in pharmaceutical dosage form by taking Tolterodine as an internal standard. The method was carried out using Phenomenex C18 (4.6ID × 250mm; 5µm) column and mobile phase comprised of methanol and Phosphate Buffer in proportion of ratio 60:40 v/v. The flow rate was 1.0mL/min and detection was carried out at 276nm. The retention time of Sulphadoxine, Pyrimethamine and Tolterodine were found to be 2.967, 4.058 and 6.908 respectively. Linearity of Sulphadoxine and Pyrimethamine in the range of 2 to 12μg/mL and 4 to 24μg/mL respectively. The % recoveries of Sulphadoxine and Pyrimethamine were found to be in between 99.93% to 99. 96 % respectively. The proposed method is suitable for the routine quality control analysis for simultaneous determination of Sulphadoxine and Pyrimethamine was in bulk and pharmaceutical dosage form.


2010 ◽  
Vol 93 (2) ◽  
pp. 523-530 ◽  
Author(s):  
Sérgio Luiz Dalmora ◽  
Maximiliano da Silva Sangoi ◽  
Daniele Rubert Nogueira ◽  
Lucélia Magalhães da Silva

Abstract An RP-HPLC method was validated for the determination of entecavir in tablet dosage form. The HPLC method was carried out on a Gemini C18 column (150 4.6 mm id) maintained at 30C. The mobile phase consisted of acetonitrilewater (95 + 5, v/v)/potassium phosphate buffer (0.01 M, pH 4; 9 + 91, v/v) pumped at a flow rate of 1.0 mL/min. Photodiode array detection was at 253 nm. The chromatographic separation was obtained with a retention time of 4.18 min, and the method was linear in the range of 0.5200 g/mL (r2 0.9998). The specificity and stability-indicating capability of the method was proven through forced degradation studies, which also showed that there was no interference of the excipients and an increase of the cytotoxicity only by the basic condition. The accuracy was 101.19, with bias lower than 1.81. The LOD and LOQ were 0.39 and 0.5 g/mL, respectively. Method validation demonstrated acceptable results for precision and robustness. The proposed method was applied for the analysis of tablet formulations, to improve QC and assure therapeutic efficacy.


2016 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Megha Sharma ◽  
Neeraj Mahindroo

Objective: The objective of the present study was to develop and validate a novel stability indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for determination of β-acetyldigoxin, an active pharmaceutical ingredient (API).Methods: The chromatographic separation was carried out on Agilent Technologies 1200 series HPLC system equipped with photo diode array detector and C-18 (4.6x250 mm, 5 µ) column. The mobile phase consisted of water: acetonitrile (65:35 v/v), delivered at a flow rate of 1.5 ml/min and eluents were monitored at 225 nm.Results: The retention time of β-acetyldigoxin was 9.2 min. The method was found to be linear (R2= 0.9995) in the range of 31.25-500 µg/ml. The accuracy studies showed the mean percent recovery of 101.02%. LOD and LOQ were observed to be 0.289 µg/ml and 0.965 µg/ml, respectively. The method was found to be robust and system suitability testing was also performed. Forced degradation analysis was carried out under acidic, alkaline, oxidative and photolytic stress conditions. Significant degradation was observed under tested conditions, except for oxidative condition. The method was able to separate all the degradation products within runtime of 20 min and was able to determine β-acetyldigoxin unequivocally in presence of degradation products.Conclusion: The novel, economic, rapid and simple method for analysis of β-acetyldigoxin is reported. The developed method is suitable for routine quality control and its determination as API, and in pharmaceutical formulations and stability study samples.


2006 ◽  
Vol 71 (11) ◽  
pp. 1195-1205 ◽  
Author(s):  
Mira Zecevic ◽  
Biljana Jocic ◽  
Snezana Agatonovic-Kustrin ◽  
Ljiljana Zivanovic

Arapid and sensitive RPHPLCmethod was developed for the routine control analysis of eletriptan hydrobromide and its organic impurity UK 120.413 in Relpax? tablets. The chromatography was performed at 20?C using a C18 XTerra ? (5 ?m, 150 x 4,6 mm) column at a flow rate 1.0 ml/min. The drug and its impurity were detected at 225 nm. The mobile phase consisted of TEA (1 %) - methanol (67.2:32.8 v/v), the pH of which was adjusted to 6.8 with 85 % orthophosphoric acid. Quantification was accomplished by the internal standard method. The developed RP HPLC method was validated by testing: accuracy, precision, repeatability, specificity, detection limit, quantification limit, linearity, robustness and sensitivity. High linearity of the analytical procedure was confirmed over the concentration range of 0.05 - 1.00 mg/ml for eletriptan hydrobromide and from 0.10 - 1.50 ?g/ml for UK 120.413, with correlation coefficients greater than r = 0.995. The low value of the RSD expressed the good repeatability and precision of the method. Experimental design and a response surface method were used to test robustness of the analytical procedure and to evaluate the effect of variation of the method parameters, namely the mobile phase composition, pH and temperature. They showed small deviations from the method setting. The good recovery and low RSD confirm the suitability of the proposed RP HPLC method for the routine determination of eletriptan hydrobromide and its impurity UK 120.413 in Relpax? tables.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Roghaieh Khoshkam ◽  
Minoo Afshar

A rapid and stability-indicating RP-HPLC method was developed for determination of l-carnitine in tablets. The separation was based on a C18 analytical column using a mobile phase which consisted of 0.05 M phosphate buffer (pH = 3): ethanol (99 : 1), including 0.56 mg/mL of sodium 1-heptanesulfonate. Column temperature was set at 50°C and quantitation was achieved by UV detection at 225 nm. In forced degradation studies, the drug was subjected to oxidation, hydrolysis, photolysis, and heat. Among the different stress conditions, the exposure to acidic and basic conditions was found to be an important adverse stability factor. The method was validated for specificity, selectivity, linearity, precision, accuracy, and robustness. The applied procedure was found to be linear in l-carnitine concentration range of 84.74–3389.50 µg/mL (r2=0.9997). Precision was evaluated by replicate analysis in which relative standard deviation (RSD) values for areas were found below 2.0%. The recoveries obtained (100.83%–101.54%) ensured the accuracy of the developed method. The expanded uncertainty (3.14%) of the method was also estimated from method validation data. Accordingly, the proposed validated and rapid procedure was proved to be suitable for routine analyzing and stability studies of l-carnitine in tablets.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0244951
Author(s):  
Hany W. Darwish ◽  
Nesma A. Ali ◽  
Ibrahim A. Naguib ◽  
Mohamed R. El Ghobashy ◽  
Abdullah M. Al-Hossaini ◽  
...  

A reliable, selective and sensitive stability-indicating RP-HPLC assay was established for the quantitation of bromazepam (BMZ) and one of the degradant and stated potential impurities; 2-(2-amino-5-bromobenzoyl) pyridine (ABP). The assay was accomplished on a C18 column (250 mm × 4.6 mm i.d., 5 μm particle size), and utilizing methanol-water (70: 30, v/v) as the mobile phase, at a flow rate of 1.0 ml min-1. HPLC detection of elute was obtained by a photodiode array detector (DAD) which was set at 230 nm. ICH guidelines were adhered for validation of proposed method regarding specificity, sensitivity, precision, linearity, accuracy, system suitability and robustness. Calibration curves of BMZ and ABP were created in the range of 1–16 μg mL-1 with mean recovery percentage of 100.02 ± 1.245 and 99.74 ± 1.124, and detection limit of 0.20 μg mL-1 and 0.24 μg mL-1 respectively. BMZ stability was inspected under various ICH forced degradation conditions and it was found to be easily degraded in acidic and alkaline conditions. The results revealed the suitability of the described methodology for the quantitation of the impurity (ABP) in a BMZ pure sample. The determination of BMZ in pharmaceutical dosage forms was conducted with the described method and showed mean percentage recovery of 99.39 ± 1.401 and 98.72 ± 1.795 (n = 6), respectively. When comparing the described procedure to a reference HPLC method statistically, no significant differences between the two methods in regard to both accuracy and precision were found.


Sign in / Sign up

Export Citation Format

Share Document