scholarly journals A Context-Aware and Self-Adaptation Strategy for Cloud Service Selection and Configuration in Run-Time

2019 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Asmae Benali ◽  
Bouchra El Asri

Day after day, the number of mobile applications deployed on cloud computing continues in increasing because of smartphone capabilities improvement. Cloud computing has already succeeded in the web-based application, for that reason, the demand for context-aware services provided by cloud computing increases. To customize a cloud service that takes into account the consumer requirements, which depend on information change, it brings to light many recent challenges to cloud computing about environment-aware, location-aware, time-aware. The cloud provider, moreover, has to manage personalized applications and the constraints of mobile devices in matters of interaction abilities and communication restrictions. This paper proposes a strategy for selecting automatically an appropriate cloud environment that runs out whole requirements, defines a configuration for the associated cloud environment and able to easily adapt to the change of the environment on either the user or the cloud side or both. This process builds on the principles of dynamic software product lines, Agent-oriented software engineering, and the MAPE-k model to select and configure cloud environments according to the consumer needs and the context change.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
K. V. Pradeep ◽  
V. Vijayakumar ◽  
V. Subramaniyaswamy

Cloud computing is a platform to share the data and resources used among various organizations, but the survey shows that there is always a security threat. Security is an important aspect of cloud computing. Hence, the responsibility underlines to the cloud service providers for providing security as the quality of service. However, cloud computing has many challenges in security that have not yet been addressed well. The data accessed or shared through any devices from the cloud environment are not safe because they are likely to have various attacks like Identity Access Management (IAM), hijacking an account or a service either by internal/external intruders. The cryptography places a major role to secure the data within the cloud environment. Therefore, there is a need for standard encryption/decryption mechanism to protect the data stored in the cloud, in which key is the mandatory element. Every cloud provider has its own security mechanisms to protect the key. The client cannot trust the service provider completely in spite of the fact that, at any instant, the provider has full access to both data and key. In this paper, we have proposed a new system which can prevent the exposure of the key as well as a framework for sharing a file that will ensure security (CIA) using asymmetric key and distributing it within the cloud environment using a trusted third party. We have compared RSA with ElGamal and Paillier in our proposed framework and found RSA gives a better result.


Author(s):  
Mohammed Radi ◽  
Ali Alwan ◽  
Abedallah Abualkishik ◽  
Adam Marks ◽  
Yonis Gulzar

Cloud computing has become a practical solution for processing big data. Cloud service providers have heterogeneous resources and offer a wide range of services with various processing capabilities. Typically, cloud users set preferences when working on a cloud platform. Some users tend to prefer the cheapest services for the given tasks, whereas other users prefer solutions that ensure the shortest response time or seek solutions that produce services ensuring an acceptable response time at a reasonable cost. The main responsibility of the cloud service broker is identifying the best data centre to be used for processing user requests. Therefore, to maintain a high level of quality of service, it is necessity to develop a service broker policy that is capable of selecting the best data centre, taking into consideration user preferences (e.g. cost, response time). This paper proposes an efficient and cost-effective plan for a service broker policy in a cloud environment based on the concept of VIKOR. The proposed solution relies on a multi-criteria decision-making technique aimed at generating an optimized solution that incorporates user preferences. The simulation results show that the proposed policy outperforms most recent policies designed for the cloud environment in many aspects, including processing time, response time, and processing cost. KEYWORDS Cloud computing, data centre selection, service broker, VIKOR, user priorities


2021 ◽  
Vol 17 (2) ◽  
pp. 179-195
Author(s):  
Priyanka Bharti ◽  
Rajeev Ranjan ◽  
Bhanu Prasad

Cloud computing provisions and allocates resources, in advance or real-time, to dynamic applications planned for execution. This is a challenging task as the Cloud-Service-Providers (CSPs) may not have sufficient resources at all times to satisfy the resource requests of the Cloud-Service-Users (CSUs). Further, the CSPs and CSUs have conflicting interests and may have different utilities. Service-Level-Agreement (SLA) negotiations among CSPs and CSUs can address these limitations. User Agents (UAs) negotiate for resources on behalf of the CSUs and help reduce the overall costs for the CSUs and enhance the resource utilization for the CSPs. This research proposes a broker-based mediation framework to optimize the SLA negotiation strategies between UAs and CSPs in Cloud environment. The impact of the proposed framework on utility, negotiation time, and request satisfaction are evaluated. The empirical results show that these strategies favor cooperative negotiation and achieve significantly higher utilities, higher satisfaction, and faster negotiation speed for all the entities involved in the negotiation.


2013 ◽  
pp. 814-834
Author(s):  
Hassan Takabi ◽  
James B.D. Joshi

Cloud computing paradigm is still an evolving paradigm but has recently gained tremendous momentum due to its potential for significant cost reduction and increased operating efficiencies in computing. However, its unique aspects exacerbate security and privacy challenges that pose as the key roadblock to its fast adoption. Cloud computing has already become very popular, and practitioners need to provide security mechanisms to ensure its secure adoption. In this chapter, the authors discuss access control systems and policy management in cloud computing environments. The cloud computing environments may not allow use of a single access control system, single policy language, or single management tool for the various cloud services that it offers. Currently, users must use diverse access control solutions available for each cloud service provider to secure data. Access control policies may be composed in incompatible ways because of diverse policy languages that are maintained separately at every cloud provider. Heterogeneity and distribution of these policies pose problems in managing access policy rules for a cloud environment. In this chapter, the authors discuss challenges of policy management and introduce a cloud based policy management framework that is designed to give users a unified control point for managing access policies to control access to their resources no matter where they are stored.


Author(s):  
Ajai K. Daniel

The cloud-based computing paradigm helps organizations grow exponentially through means of employing an efficient resource management under the budgetary constraints. As an emerging field, cloud computing has a concept of amalgamation of database techniques, programming, network, and internet. The revolutionary advantages over conventional data computing, storage, and retrieval infrastructures result in an increase in the number of organizational services. Cloud services are feasible in all aspects such as cost, operation, infrastructure (software and hardware) and processing. The efficient resource management with cloud computing has great importance of higher scalability, significant energy saving, and cost reduction. Trustworthiness of the provider significantly influences the possible cloud user in his selection of cloud services. This chapter proposes a cloud service selection model (CSSM) for analyzing any cloud service in detail with multidimensional perspectives.


2016 ◽  
pp. 2076-2095
Author(s):  
Abhishek Majumder ◽  
Sudipta Roy ◽  
Satarupa Biswas

Cloud is considered as future of Information Technology. User can utilized the cloud on pay-as-you use basis. But many organizations are stringent about the adoption of cloud computing due to their concern regarding the security of the stored data. Therefore, issues related to security of data in the cloud have become very vital. Data security involves encrypting the data and ensuring that suitable policies are imposed for sharing those data. There are several data security issues which need to be addressed. These issues are: data integrity, data intrusion, service availability, confidentiality and non-repudiation. Many schemes have been proposed for ensuring data security in cloud environment. But the existing schemes lag in fulfilling all these data security issues. In this chapter, a new Third Party Auditor based scheme has been proposed for secured storage and retrieval of client's data to and from the cloud service provider. The scheme has been analysed and compared with some of the existing schemes with respect to the security issues. From the analysis and comparison it can be observed that the proposed scheme performs better than the existing schemes.


Author(s):  
Minakshi Sharma ◽  
Rajneesh Kumar ◽  
Anurag Jain

Cloud load balancing is done to persist the services in the cloud environment along with quality of service (QoS) parameters. An efficient load balancing algorithm should be based on better optimization of these QoS parameters which results in efficient scheduling. Most of the load balancing algorithms which exist consider response time or resource utilization constraints but an efficient algorithm must consider both perspectives from the user side and cloud service provider side. This article presents a load balancing strategy that efficiently allocates tasks to virtualized resources to get maximum resource utilization in minimum response time. The proposed approach, join minimum loaded queue (JMLQ), is based on the existing join idle queue (JIQ) model that has been modified by replacing idle servers in the I-queues with servers having one task in execution list. The results of simulation in CloudSim verify that the proposed approach efficiently maximizes resource utilization by reducing the response time in comparison to its other variants.


Sign in / Sign up

Export Citation Format

Share Document