scholarly journals Investigation of Changes in Beach Morphology due to Coastal Armoring

2021 ◽  
Vol 11 (1) ◽  
pp. 65
Author(s):  
C. Anandan ◽  
C. Senthil Kumar

The Tsunami, which struck the east coast of India on 26th December 2004, caused huge damage to life, property and environment. Beyond the heavy toll on human lives, it had caused an enormous environmental impact. Kalpakkam located in the south east coast of India is one of the areas affected by the tsunami. At some locations along the coast around Kalpakkam, morphological changes, vegetation loss and fatality were reported. Later, a slew of remedial measures were initiated at Kalpakkam in 2006 and construction of coastal armoring in the form of Tsunami Protection Wall (TPW) of 3.2 km length was one of them. A study was undertaken to assess the impact of this TPW on the surroundings based on periodic measurements of High Water Line (HWL) before and after construction of the wall. Also beach profiles were made at selected locations to observe seasonal changes in sedimentation pattern (i.e. accretion and erosion). As the residential area at Kalpakkam is located between fishing hamlets at northern and southern side, it is necessary to understand the impact of TPW, if any, in the surrounding area and on the fishing hamlets. Towards this assessment, high resolution satellite data such as Quickbird and IKONOS were employed (for the years 2002, 2003, 2009 and 2011) to measure the HWL. In addition, monthly beach profiles were carried out to measure the sedimentation pattern at selected transects with the help of N3 Precision Level survey instrument for the year 2009. The detailed investigations and analysis revealed no significant impact on the beach morphology and sedimentation patterns due to the construction of TPW, within the residential areas as well as at fishing hamlets. The average variations in the position of HWL along the coast was 4.6m and sedimentation changes were in the range of ≈ 0.5m in the berm of backshore region and ≈ 1.7m in the swash zone of the foreshore region all along the study area. No adverse effect is observed and the variations observed are similar to that in an unarmored control beach. The study provides the confidence that multi-dated satellite monitoring together with the profiling of beach would suffice the need for understanding the changes in the beach morphology due to the construction of beach armoring.

Author(s):  
A.-L. Montreuil ◽  
M. Chen ◽  
A. Esquerré ◽  
R. Houthuys ◽  
R. Moelans ◽  
...  

<p><strong>Abstract.</strong> Sustainable management of the coastal resources requires a better understanding of the processes that drive coastline change. The coastline is a highly dynamic sea-terrestrial interface. It is affected by forcing factors such as water levels, waves, winds, and the highest and most severe changes occur during storm surges. Extreme storms are drivers responsible for rapid and sometimes dramatic changes of the coastline. The consequences of the impacts from these events entail a broad range of social, economic and natural resource considerations from threats to humans, infrastructure and habitats. This study investigates the impact of a severe storm on coastline response on a sandy multi-barred beach at the Belgian coast. Airborne LiDAR surveys acquired pre- and post-storm covering an area larger than 1 km<sup>2</sup> were analyzed and reproducible monitoring solutions adapted to assess beach morphological changes were applied. Results indicated that the coast retreated by a maximum of 14.7 m where the embryo dunes in front of the fixed dunes were vanished and the foredune undercut. Storm surge and wave attacks were probably the most energetic there. However, the response of the coastline proxies associated with the mean high water line (MHW) and dunetoe (DuneT) was spatially variable. Based on the extracted beach features, good correlations (r>0.73) were found between coastline, berm and inner intertidal bar morphology, while it was weak with the most seaward bars covered in the surveys. This highlights the role of the upper features on the beach to protect the coastline from storm erosion by reducing wave energy. The findings are of critical importance in improving our knowledge and forecasting of coastline response to storms, and also in its translation into management practices.</p>


2021 ◽  
Author(s):  
Sazzad Hossain ◽  
Hannah L. Cloke ◽  
Andrea Ficchì ◽  
Andrew G. Turner ◽  
Elisabeth M. Stephens

Abstract. While flooding is an annual occurrence in the Brahmaputra basin during the South Asian summer monsoon, there is large variability in the flood characteristics that drive risk: flood duration, rate of water level rise and peak water level. The aim of this study is to understand the key hydrometeorological drivers influencing these flood characteristics. We analyse hydrometeorological time series of the last 33 years to understand flood dynamics focusing on three extraordinary floods in 1998 (long duration), 2017 (rapid rise) and 2019 (high water level). We find that long duration floods in the basin have been driven by basin-wide seasonal rainfall extremes associated with the development phase of strong La Niña events, whereas floods with a rapid rate of rise have been driven by more localized rainfall falling in a hydrological ‘sweet spot’ that leads to a concurrent contribution from the tributaries into the main stem of the river. We find that recent record high water levels are not coincident with extreme river flows, hinting that sedimentation and morphological changes are also important drivers of flood risk that should be further investigated. Understanding these drivers is essential for flood forecasting and early warning and also to study the impact of future climate change on flood.


2020 ◽  
Vol 95 (sp1) ◽  
pp. 626
Author(s):  
R. Mani Murali ◽  
K.N. Reshma ◽  
S. Santhosh Kumar ◽  
S. Amar Balaji ◽  
D. Murali Krishnam Raju ◽  
...  

2012 ◽  
Vol 279 ◽  
pp. 132-142 ◽  
Author(s):  
Pratap Kumar Mohanty ◽  
Sisir Kumar Patra ◽  
Satyanarayan Bramha ◽  
Budhadev Seth ◽  
Umakanta Pradhan ◽  
...  

2016 ◽  
Vol 4 (3) ◽  
pp. T303-T311 ◽  
Author(s):  
Ashutosh Kumar ◽  
Karthikeyan Gunasekaran ◽  
Nitin Bhardwaj ◽  
Jayanta Dutta ◽  
Smita Banerjee

Drilling deep wells in the Mahanadi Basin of the east coast of India is highly challenging because of the variations in pore pressure in the Miocene formations. We have observed that the wells drilled in the northern part of the study area have more drilling hazards due to the presence of high pore pressure (modular dynamic test measurements of up to 18.5 ppg) when compared with wells drilled in the southern part of the basin. In the northern part, pore pressure prediction assuming disequilibrium compaction (DC) underpredicts by approximately 2–3.5 ppg when compared with observed pressures; however, in the southern part, pressure prediction matches the observed pressures in the drilled wells. Analysis of sonic velocity-density crossplots suggests that along with DC, some other secondary mechanism also plays an important role in generating excess overpressure in the northern part of the study area; however, the well data do not indicate the presence of an established secondary mechanism, such as fluid expansion, clay conversion, or cementation. The prime difference between the northern and southern areas is the presence of multiple canyon cuts in the northern part and the observation that very high overpressures occur below these canyon cuts. Hence, an attempt was made to ascertain the relationship between the presence of canyon cuts and the observed high pressure with the help of burial history modeling that incorporates the canyon cut features. Pressure estimation based on this approach closely matches the observed pressures in the drilled wells. This very high overpressure observed in the northern part is most likely generated by the combined effect of porosity rebound (due to overburden removal) along with persistence of overpressures that developed prior to erosion. This burial history modeling approach helps in recognizing and understanding the impact of erosional canyon cut events on generation of excess overpressure in the study area. Furthermore, effective stress methods that take secondary pressure generating mechanisms (unloading) into account are used to quantify the difference in pore pressure.


2012 ◽  
Vol 2 (11) ◽  
pp. 517-520
Author(s):  
VIJAYA BHANU, CH VIJAYA BHANU, CH ◽  
◽  
ANNAPURNA, C ANNAPURNA, C ◽  
SRINIVASA RAO, M SRINIVASA RAO, M ◽  
SIVA LAKSHMI, M. V SIVA LAKSHMI, M. V ◽  
...  

Author(s):  
M. S. Bugaeva ◽  
O. I. Bondarev ◽  
N. N. Mikhailova ◽  
L. G. Gorokhova

Introduction. The impact on the body of such factors of the production environment as coal-rock dust and fluorine compounds leads to certain shift s in strict indicators of homeostasis at the system level. Maintaining the relative constancy of the internal environment of the body is provided by the functional consistency of all organs and systems, the leading of which is the liver. Organ repair plays a crucial role in restoring the structure of genetic material and maintaining normal cell viability. When this mechanism is damaged, the compensatory capabilities of the organ are disrupted, homeostasis is disrupted at the cellular and organizational levels, and the development of the main pathological processes is noted.The aim of the study is to compare the morphological mechanisms of maintaining structural homeostasis of the liver in the dynamics of the impact on the body of coal-rock dust and sodium fluoride.Materials and methods. Experimental studies were conducted on adult white male laboratory rats. Features of morphological mechanisms for maintaining structural homeostasis of the liver in the dynamics of exposure to coal-rock dust and sodium fluoride were studied on experimental models of pneumoconiosis and fluoride intoxication. For histological examination in experimental animals, liver sampling was performed after 1, 3, 6, 9, 12 weeks of the experiment.Results. The specificity of morphological changes in the liver depending on the harmful production factor was revealed. It is shown that chronic exposure to coal-rock dust and sodium fluoride is characterized by the development of similar morphological changes in the liver and its vessels from the predominance of the initial compensatory-adaptive to pronounced violations of the stromal and parenchymal components. Long-term inhalation of coal-rock dust at 1–3 weeks of seeding triggers adaptive mechanisms in the liver in the form of increased functional activity of cells, formation of double-core hepatocytes, activation of immunocompetent cells and endotheliocytes, ensuring the preservation of the parenchyma and the general morphostructure of the organ until the 12th week of the experiment. Exposure to sodium fluoride leads to early disruption of liver compensatory mechanisms and the development of dystrophic changes in the parenchyma with the formation of necrosis foci as early as the 6th week of the experiment.Conclusions. The study of mechanisms for compensating the liver structure in conditions of long-term exposure to coal-rock dust and sodium fluoride, as well as processes that indicate their failure, and the timing of their occurrence, is of theoretical and practical importance for developing recommendations for the timely prevention and correction of pathological conditions developing in employees of the aluminum and coal industry.The authors declare no conflict of interests.


Sign in / Sign up

Export Citation Format

Share Document