scholarly journals Seedling and Adult Plant Resistance in the Ethiopian Bread Wheat Landraces to Stripe Rust Disease

2021 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Fikrte Yirga ◽  
Ayele Badebo ◽  
Mashila Dejene

High yielding farmers’ bread wheat cultivars are threatened by emerging race(s) of stripe (yellow) rust caused by Puccinia striiformis f.sp. tritici (Pst) in the highlands of Ethiopia. In depletion of rust resistance in commercial cultivars, researchers often look for new sources from close relatives and landraces. The objective of this study was to determine stripe rust resistance in selected Ethiopian bread wheat landraces obtained from the Ethiopian Institute of Biodiversity (IBCE). In 2017, a total of 152 accessions were exposed to the prevailing stripe rust races in hot spot areas (Kulumsa and Meraro) in Arsi zone of Oromia region. In the second year (2018), only promising landraces (57) were evaluated both at seedling and adult plant growth stages. The seedling test was conducted in the greenhouse at Kulumsa research center using three (PstS2 (v32), (PstS11) and (PstS11 v25) Pst races. In field evaluations, terminal severity (TRS), coefficient of infection (CI), area under disease progress curve (AUDPC), disease progress rate (DPR) and head infection (HI) were considred. High disease pressure was noted with 100% severity on susceptible entries at both locations and seasons. Highly significant (P<0.001) differences were noted among the landraces for all disease parameters indicated above. Of the 152 landraces, 57(38%) exhibited lower or equal disease reaction compared to the resistant check(Enkoy) across locations. Overall, 18 accessions showed resistance to the prevailing Pst races both at seedling stage and field conditions whereas14 exhibited susceptible /intermediate reaction at seedling stage, but had lower disease reaction under field conditions. This study has identified potential sources of overall and adult plant resistance in the Ethiopian bread wheat landraces to the prevailing Pst races. The authors recommend further studies to determine the diversity and/or novelity of resistance genes in selected accessions. Future wheat improvement should focus on utilization of these genetic resources to minimize the re-current outbreak of rust diseases.

Plant Disease ◽  
2020 ◽  
Author(s):  
Yu Wu ◽  
Yuqi Wang ◽  
Fangjie Yao ◽  
Li Long ◽  
Jing Li ◽  
...  

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in the world. Chinese wheat landrace ‘Guangtoumai’ (GTM) exhibited a high-level resistance against predominant Pst races in China at the adult-plant stage. The objective of this research was to identify and map the major locus/loci for stripe rust resistance in GTM. A set of 212 recombinant inbred lines (RILs) was developed from a cross between GTM and Avocet S (AvS). The parents and RILs were evaluated in three field tests (2018, 2019, and 2020 at Chongzhou, Sichuan) with the currently predominant Pst races for final disease severity (FDS) and genotyped with the Wheat 55K SNP array to construct a genetic map with 1,031 SNP markers. A major locus, named QYr.GTM-5DL, was detected on chromosome 5DL in GTM. The locus was mapped in a 2.75 cM interval flanked by SNP markers AX-109855976 and AX-109453419, explaining up to 44.4% of the total phenotypic variation. Since no known Yr genes have been reported on chromosome 5DL, QYr.GTM-5DL is very likely a novel adult plant resistance (APR) locus. Haplotype analysis revealed that the resistance allele displayed enhanced levels of stripe rust resistance and is likely present in 5.3% of the 247 surveyed Chinese wheat landraces. The derived cleaved amplified polymorphic sequence (dCAPS) marker dCAPS-5722, converted from a SNP marker tightly linked to QYr.GTM-5DL with 0.3 cM, was validated on a subset of RILs and 48 commercial wheat cultivars developed in Sichuan. The results indicated that QYr.GTM-5DL with its linked dCAPS marker could be used in marker-assisted selection to improve stripe rust resistance in breeding programs, and this QTL will provide new and possibly durable resistance to stripe rust.


2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


2020 ◽  
Author(s):  
Yuqi Wang ◽  
Can Yu ◽  
Yukun Cheng ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

Abstract Background: Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant varieties are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions, in addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under controlled greenhouse conditions.Results: Seventeen accessions showed stable high-level resistance to stripe rust across all environments under field tests, while four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers covering the whole genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99%–23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, while four and one QTL conferring seedling and adult-plant resistance respectively were mapped distantly from previously reported stripe rust resistance genes or QTL and may be novel resistance loci.Conclusions: Our results provided an integrated view of stripe rust resistance resources in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.


2020 ◽  
Author(s):  
Yuqi Wang ◽  
Can Yu ◽  
Yukun Cheng ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

Abstract Background: Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant varieties are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions, in addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under controlled greenhouse conditions. Results: Seventeen accessions showed stable high-level resistance to stripe rust across all environments under field tests, while four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers covering the whole genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99%–23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, while four and one QTL conferring seedling and adult-plant resistance respectively were mapped distantly from previously reported stripe rust resistance genes or QTL and may be novel resistance loci. Conclusions: Our results provided an integrated view of stripe rust resistance resources in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.


2012 ◽  
Vol 63 (6) ◽  
pp. 539 ◽  
Author(s):  
M. A. Asad ◽  
B. Bai ◽  
C. X. Lan ◽  
J. Yan ◽  
X. C. Xia ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a fungal disease that causes significant yield losses in many wheat-growing regions of the world. Previously, five quantitative trait loci (QTLs) for adult-plant resistance (APR) to stripe rust resistance were identified in Italian wheat cultivar Libellula. The objectives of this study were to map QTLs for APR to powdery mildew in 244 F2 : 3 lines of Libellula/Huixianhong, to analyse the stability of detected QTLs across environments, and to assess the association of these QTLs with stripe rust resistance. Powdery mildew response was evaluated for 2 years in Beijing and for 1 year in Anyang. The correlation between averaged maximum disease severity (MDS) and averaged area under disease progress curve (AUDPC) over 2 years in Beijing was 0.98, and heritabilities of MDS and AUDPC were 0.65 and 0.81, respectively, based on the mean values averaged across environments. SSR markers were used to screen the parents and mapping population. Five QTLs were identified by inclusive composite interval mapping, designated as QPm.caas-2DS, QPm.caas-4BL.1, QPm.caas-6BL.1, QPm.caas-6BL.2, and QPm.caas-7DS. Three QTLs (QPm.caas-2DS and QPm.caas-6BL.1, and QPm.caas-6BL.2) seem to be new resistance loci for powdery mildew. QTLs QPm.caas-2DS and QPm.caas-4BL.1 were identified at the same position as previously mapped QTLs for stripe rust resistance in Libellula. The QTL QPm.caas-7DS, derived from Libellula, coincided with the slow rusting and slow mildewing locus Lr34/Yr18/Pm38. These results and the identified markers could be useful for wheat breeders aiming for durable resistance to both powdery mildew and stripe rust.


2020 ◽  
Vol 19 (3) ◽  
pp. 624-631
Author(s):  
Jiang-tao LUO ◽  
Jian-min ZHENG ◽  
Hong-shen WAN ◽  
Wu-yun YANG ◽  
Shi-zhao LI ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2262
Author(s):  
Ghady E. Omar ◽  
Yasser S. A. Mazrou ◽  
Mohammad K. EL-Kazzaz ◽  
Kamal E. Ghoniem ◽  
Mammduh A. Ashmawy ◽  
...  

Adult plant resistance in wheat is an achievement of the breeding objective because of its durability in comparison with race-specific resistance. Partial resistance to wheat stripe rust disease was evaluated under greenhouse and field conditions during the period from 2016 to 2021. Misr 3, Sakha 95, and Giza 171 were the highest effective wheat genotypes against Puccinia striiformis f. sp. tritici races. Under greenhouse genotypes, Sakha 94, Giza 168, and Shandaweel1 were moderately susceptible, had the longest latent period and lowest values of the length of stripes and infection frequency at the adult stage. Partial resistance levels under field conditions were assessed, genotypes Sakha 94, Giza 168, and Shandaweel1 exhibited partial resistance against the disease. Leaf tip necrosis (LTN) was noted positively in three genotypes Sakha 94, Sakha 95, and Shandaweel1. Molecular analyses of Yr18 were performed for csLV34, cssfr1, and cssfr2 markers. Only Sakha 94 and Shandaweel1 proved to carry the Yr18 resistance allele at both phenotypic and genotypic levels. Scanning electron microscopy (SEM) observed that the susceptible genotypes were colonized extensively on leaves, but on the slow-rusting genotype, the pustules were much less in number, diminutive, and poorly sporulation, which is similar to the pustule of NIL Jupateco73 ‘R’.


2016 ◽  
Vol 18 (4) ◽  
pp. 411-428 ◽  
Author(s):  
Z. A. Pretorius ◽  
C. X. Lan ◽  
R. Prins ◽  
V. Knight ◽  
N. W. McLaren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document