scholarly journals Chromosomal Evolution in Psittaciformes. Revisited

2016 ◽  
Vol 8 (4) ◽  
pp. 34
Author(s):  
A. Villa Rus ◽  
J. C. Cigudosa ◽  
J. L. Carrasco Juan ◽  
A. Otero Gomez ◽  
T. Acosta Almeida ◽  
...  

<p class="1Body">With colourful plumage, charismatic character and vocal learning abilities, parrots are one of the most striking and recognizable bird groups. Their attractiveness has drawn human attention for centuries, and members of the Psittaciformes order were, also, among the first avian species to be subject to cytogenetic studies which have contributed to understand their taxonomic and evolutionary relationships.</p><p class="1Body">We present here the karyological results collected by the study of thirteen parrot species new to karyology. These results are additionally supported by G banded preparations obtained in five species.</p><p class="1Body">The order Psittaciformes is an interesting example of a, typically, non migratory avian lineage with Gondwanaland origin, whose evolutionary radiation has been shaped by the Cenozoic geographic and climatic events that affected the land masses derived from the Gondwanaland continental split.</p><p class="1Body">We discuss the results of our studies, in conjunction with the previously compiled Psittaciformes cytogenetic data to delineate a picture of the chromosomal evolution of the order, concurrently with the biogeographic history of the lands in the southern Hemisphere.</p><p class="1Body">Considering the available data on parrot cytogenetics, a "standard parrot karyotype pattern" is proposed for evolutionary comparisons.</p><p class="1Body">Several biogeographic, and phylogenetically related "karyogram patterns" are also identified, and mechanisms of chromosome rearrangement that associate this patterns among them, and with the standard parrot karyotype pattern are proposed. These schemes on parrot chromosomal variation are discussed in relation to the general avian chromosome evolutionary theses proposed by cytogenetic and molecular genomic researchers.</p>

Behaviour ◽  
2015 ◽  
Vol 152 (11) ◽  
pp. 1433-1461 ◽  
Author(s):  
Solveig Walløe ◽  
Heidi Thomsen ◽  
Thorsten J. Balsby ◽  
Torben Dabelsteen

Parrots are renowned for their vocal learning abilities. Yet only few parrot species have been investigated and empirically proven to possess vocal learning abilities. The aim of this study was to investigate if short-term vocal learning may be a widespread phenomenon among Psittaciformes. Through an interactive experiment we compare the ability of four parrot species, the peach-fronted conure (Aratinga aurea), the cockatiel (Nymphicus hollandicus), the peach-faced lovebird (Agapornis roseicollis) and the budgerigar (Melopsittacus undulatus), to vocally match playback of contact calls. All four species made an overall change to their contact call in response to the playback, and they also varied the degree of similarity with the playback call throughout the playback experiment. The peach-fronted conure showed the biggest overall changes to their contact calls by vocally matching the playback call and the budgerigar showed the least change. The cockatiel and the peach-faced lovebird showed intermediary levels of change making their calls overall less similar to the playback call. The peach-fronted conure responded with highest similarity to familiar individuals and the cockatiel responded with an overall higher similarity to female playback stimuli. Cockatiel males and budgerigar males responded with a higher call rate to playback than female conspecifics. Peach-faced lovebirds responded fastest to unfamiliar males. Based on the results we conclude that short-term vocal learning is a widespread phenomenon among parrots. The way short-term vocal learning is used however, differs between species suggesting that short-term vocal learning have different functions in different species.


Author(s):  
Mariela C. Castro ◽  
Murilo J. Dahur ◽  
Gabriel S. Ferreira

AbstractDidelphidae is the largest New World radiation of marsupials, and is mostly represented by arboreal, small- to medium-sized taxa that inhabit tropical and/or subtropical forests. The group originated and remained isolated in South America for millions of years, until the formation of the Isthmus of Panama. In this study, we present the first reconstruction of the biogeographic history of Didelphidae including all major clades, based on parametric models and stratified analyses over time. We also compiled all the pre-Quaternary fossil records of the group, and contrasted these data to our biogeographic inferences, as well as to major environmental events that occurred in the South American Cenozoic. Our results indicate the relevance of Amazonia in the early diversification of Didelphidae, including the divergence of the major clades traditionally ranked as subfamilies and tribes. Cladogeneses in other areas started in the late Miocene, an interval of intense shifts, especially in the northern portion of Andes and Amazon Basin. Occupation of other areas continued through the Pliocene, but few were only colonized in Quaternary times. The comparison between the biogeographic inference and the fossil records highlights some further steps towards better understanding the spatiotemporal evolution of the clade. Finally, our results stress that the early history of didelphids is obscured by the lack of Paleogene fossils, which are still to be unearthed from low-latitude deposits of South America.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
Daysa Athaydes ◽  
Cayo A. R. Dias ◽  
Renato Gregorin ◽  
Fernando A. Perini

2015 ◽  
Vol 93 ◽  
pp. 63-76 ◽  
Author(s):  
Jin-Hua Ran ◽  
Ting-Ting Shen ◽  
Wen-Juan Liu ◽  
Pei-Pei Wang ◽  
Xiao-Quan Wang

Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 226-231 ◽  
Author(s):  
Yasuka Toda ◽  
Meng-Ching Ko ◽  
Qiaoyi Liang ◽  
Eliot T. Miller ◽  
Alejandro Rico-Guevara ◽  
...  

Early events in the evolutionary history of a clade can shape the sensory systems of descendant lineages. Although the avian ancestor may not have had a sweet receptor, the widespread incidence of nectar-feeding birds suggests multiple acquisitions of sugar detection. In this study, we identify a single early sensory shift of the umami receptor (the T1R1-T1R3 heterodimer) that conferred sweet-sensing abilities in songbirds, a large evolutionary radiation containing nearly half of all living birds. We demonstrate sugar responses across species with diverse diets, uncover critical sites underlying carbohydrate detection, and identify the molecular basis of sensory convergence between songbirds and nectar-specialist hummingbirds. This early shift shaped the sensory biology of an entire radiation, emphasizing the role of contingency and providing an example of the genetic basis of convergence in avian evolution.


2007 ◽  
Vol 3 (3) ◽  
pp. 323-326 ◽  
Author(s):  
Knud A Jønsson ◽  
Jon Fjeldså ◽  
Per G.P Ericson ◽  
Martin Irestedt

Biogeographic connections between Australia and other continents are still poorly understood although the plate tectonics of the Indo-Pacific region is now well described. Eupetes macrocerus is an enigmatic taxon distributed in a small area on the Malay Peninsula and on Sumatra and Borneo. It has generally been associated with Ptilorrhoa in New Guinea on the other side of Wallace's Line, but a relationship with the West African Picathartes has also been suggested. Using three nuclear markers, we demonstrate that Eupetes is the sister taxon of the South African genus Chaetops , and their sister taxon in turn being Picathartes , with a divergence in the Eocene. Thus, this clade is distributed in remote corners of Africa and Asia, which makes the biogeographic history of these birds very intriguing. The most parsimonious explanation would be that they represent a relictual basal group in the Passerida clade established after a long-distance dispersal from the Australo-Papuan region to Africa. Many earlier taxonomic arrangements may have been based on assumptions about relationships with similar-looking forms in the same, or adjacent, biogeographic regions, and revisions with molecular data may uncover such cases of neglect of ancient relictual patterns reflecting past connections between the continents.


2019 ◽  
Vol 130 ◽  
pp. 81-91 ◽  
Author(s):  
Marco Dinis ◽  
Khaled Merabet ◽  
Fernando Martínez-Freiría ◽  
Sebastian Steinfartz ◽  
Miguel Vences ◽  
...  

Therya ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 213-236
Author(s):  
Amanda K. Jones ◽  
Schuyler W. Liphardt ◽  
Jonathan L. Dunnum

A study of the mammals of the Gila region of New Mexico was conducted from 2012 through 2020, with 2,919 voucher specimens collected through fieldwork and collaborations with commercial trappers, in addition to data from camera traps, review of major holdings at 46 museums (n = 12,505 georeferenced specimens), and literature review.  Specimens cover a 170-year span, dating back to 1850 and were unevenly distributed spatially and temporally across the Gila region.  Most areas were very poorly represented and when summed across all mammal species, ranged from 0.02 to 3.7 specimens per km2.  The survey documented 108 species (104 now extant) for the region.  High species richness, greater than that reported for 38 states in the United States, is likely due to the juxtaposition of multiple biomes in the Gila, including the Sonoran, Chihuahuan, and Great Basin deserts, the Rocky Mountains and Sierra Madre Occidental, and nearby “sky islands’’ of the Southwest.  Two species, Leptonycteris yerbabuenae and Zapus luteus, are documented for the first time from the study area.  Expansions of the known range of these species, and Sciurus arizonensis are described from specimen and camera data.  Preliminary phylogeographic studies of four species (Notiosorex crawfordi, Neotoma albigula, Perognathus flavus, and Thomomys bottae) using the mitochondrial cytochrome-b gene reveal the dynamic biogeographic history of the region and reinforce how landscape complexity and climate change have jointly contributed to diversification and thus high mammalian diversity in the region.


2016 ◽  
Author(s):  
Leticia Loss-Oliveira ◽  
Cassia CMS Sakuragui ◽  
Maria de Lourdes Soares ◽  
Carlos G Schrago

Philodendron is the second most diverse genus of the Araceae, a tropical monocot family with significant morphological diversity along its wide geographic distribution in the Neotropics. Although evolutionary studies of Philodendron were conducted in recent years, the phylogenetic relationship among its species remains unclear. Additionally, analyses conducted to date suggested the inclusion of all American representatives of a closely related genus, Homalomena, within the Philodendron clade. A thorough evaluation of the phylogeny and timescale of these lineages is thus necessary to elucidate the tempo and mode of evolution of this large Neotropical genus and to unveil the biogeographic history of Philodendron evolution along the Amazonian and Atlantic Rain Forests, as well as open dry forests of South America. To this end, we have estimated the molecular phylogeny for 68 Philodendron species, which consists of the largest sampling assembled to date aiming the study of the evolutionary affinities. We have also performed ancestral reconstruction of species distribution along biomes. Finally, we contrasted these results with the inferred timescale of Philodendron and Homalomena lineage diversification. Our estimates indicate that American Homalomena is the sister clade to Philodendron. The early diversification of Philodendron took place in the Amazon Forest from Early to Middle Miocene, followed by colonization of the Atlantic Forest and the savanna-like landscapes, respectively. Based on the age of the last common ancestor of Philodendron, the species of this genus diversified by rapid radiations, leading to its wide extant distribution in the Neotropical region.


Sign in / Sign up

Export Citation Format

Share Document