landscape complexity
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 53)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Vol 328 ◽  
pp. 107864
Author(s):  
Pierre Mallet ◽  
Arnaud Béchet ◽  
Thomas Galewski ◽  
François Mesléard ◽  
Samuel Hilaire ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Marta Ortega ◽  
Natalia Moreno ◽  
Cristina E. Fernández ◽  
Susana Pascual

The economic importance of Bactrocera oleae (Rossi) and the problems associated with insecticides make necessary new management approaches, including deeper biological knowledge and its relationship with landscape structure. Landscape complexity reduces B. oleae abundance in late summer–autumn in areas of high dominance of olive groves, but the effect of landscape structure in spring and in areas less dominated by olive groves has not been studied. It is also unknown whether the insect disperses from olive groves, using other land uses as a refugee in summer. This work evaluates the effect of landscape structure on olive fruit fly abundance and movement in spring and autumn, and infestation in autumn, in central Spain, an area where the olive crop does not dominate the landscape. A cost–distance analysis is used to evaluate the movement of the fly, especially trying to know whether the insects move away from olive groves in summer. The results indicate that B. oleae abundance is consistently lower in complex landscapes with high scrubland area (CAS), patch richness (PR) and Simpson landscape diversity index (SIEI), and low olive grove area (CAO). The cost–distance analysis shows that the fly moves mainly in spring, and amongst olive groves, but there is no evidence that land uses other than olive groves serve as a summer refuge. Olive fly infestation decreased with decreasing CAO and increasing CAS and SIEI, accordingly with the effect of landscape on abundance. Thus, mixing olive groves with other land uses, which are not a source of flies, can help improve control of this important pest.


2021 ◽  
Vol 66 ◽  
pp. 127411
Author(s):  
Qunyue Liu ◽  
Zhipeng Zhu ◽  
Xianjun Zeng ◽  
Zhixiong Zhuo ◽  
Baojian Ye ◽  
...  

2021 ◽  
Author(s):  
Ping Lu ◽  
Daipeng Chen ◽  
Zhaomei Qi ◽  
Haoming Wang ◽  
Yitong Chen ◽  
...  

Alternative splicing (AS) and alternative polyadenylation (APA) of pre-mRNAs contribute greatly to transcriptome complexity and gene expression regulation in higher eukaryotes. Their biological impact in filamentous fungi, however, has been poorly studied. Here we combine PacBio Isoform Sequencing and strand-specific RNA-Seq of multiple tissues together with mutant characterization to reveal the landscape, complexity and regulation of AS and APA in the filamentous plant pathogenic fungus Fusarium graminearum. We updated the reference genome and generated a comprehensive annotation comprising 51,617 transcript isoforms from 17,189 genes. Majority of the transcripts represent novel isoforms, including 2,998 undiscovered protein-coding genes. In total, 42.7% of multi-exonic genes and 64.8% of genes have AS and APA isoforms, respectively, suggesting AS and APA increase previously unrecognized transcriptome complexity in fungi. Nonsense-mediated mRNA decay factor FgUPF1 may not degrade AS transcripts with premature-stop codons but regulate ribosome biogenesis. Distal polyadenylation sites have a strong signal but proximal polyadenylation isoforms are high expressed. The core 3′-end processing factors FgRNA15, FgHRP1, and FgFIP1 play important roles in promoting proximal polyadenylation site usage and also intron splicing. Genome-wide increase in the abundance of transcripts with retained introns and long 3′-UTRs and downregulation of the spliceosomal and 3′-end processing factors are found in older tissues and quiescent conidia, indicating that intron retention and 3′-UTR lengthening may be a transcriptional signature of aging and dormancy in fungi. Overall, our study generates a comprehensive full-length transcript annotation for F. graminearum and provides new insights into the complexity and regulation of transcriptome in filamentous fungi


2021 ◽  
Author(s):  
Lan Nguyen ◽  
Lan H Nguyen ◽  
Sam Robinson ◽  
Paul Galpern

2021 ◽  
Vol 29 (3) ◽  
pp. 318-336
Author(s):  
Yuncai Wang ◽  
Junda Huang ◽  
Chundi Chen ◽  
Jiake Shen ◽  
Shuo Sheng

The cooling effect of green infrastructure (GI) is becoming a hot topic on mitigating the urban heat island (UHI) effect. Alterations to the green space are a viable solution for reducing land surface temperature (LST), yet few studies provide specific guidance for landscape planning adapted to the different regions. This paper proposed and defined the landscape complexity and the threshold value of cooling effect (TVoE). Results find that: (1) GI provides a better cooling effect in the densely built-up area than the green belt; (2) GI with a simple form, aggregated configuration, and low patch density had a better cooling intensity; (3) In the densely built-up area, TVoE of the forest area is 4.5 ha, while in the green belt, TVoE of the forest and grassland area is 9 ha and 2.25 ha. These conclusions will help the planners to reduce LST effectively, and employ environmentally sustainable planning.


2021 ◽  
Author(s):  
Yitian Zhou ◽  
Volker M. Lauschke

AbstractBoth safety and efficacy of medical treatment can vary depending on the ethnogeographic background of the patient. One of the reasons underlying this variability is differences in pharmacogenetic polymorphisms in genes involved in drug disposition, as well as in drug targets. Knowledge and appreciation of these differences is thus essential to optimize population-stratified care. Here, we provide an extensive updated analysis of population pharmacogenomics in ten pharmacokinetic genes (CYP2D6, CYP2C19, DPYD, TPMT, NUDT15 and SLC22A1), drug targets (CFTR) and genes involved in drug hypersensitivity (HLA-A, HLA-B) or drug-induced acute hemolytic anemia (G6PD). Combined, polymorphisms in the analyzed genes affect the pharmacology, efficacy or safety of 141 different drugs and therapeutic regimens. The data reveal pronounced differences in the genetic landscape, complexity and variant frequencies between ethnogeographic groups. Reduced function alleles of CYP2D6, SLC22A1 and CFTR were most prevalent in individuals of European descent, whereas DPYD and TPMT deficiencies were most common in Sub-Saharan Africa. Oceanian populations showed the highest frequencies of CYP2C19 loss-of-function alleles while their inferred CYP2D6 activity was among the highest worldwide. Frequencies of HLA-B*15:02 and HLA-B*58:01 were highest across Asia, which has important implications for the risk of severe cutaneous adverse reactions upon treatment with carbamazepine and allopurinol. G6PD deficiencies were most frequent in Africa, the Middle East and Southeast Asia with pronounced differences in variant composition. These variability data provide an important resource to inform cost-effectiveness modeling and guide population-specific genotyping strategies with the goal of optimizing the implementation of precision public health.


Sign in / Sign up

Export Citation Format

Share Document