scholarly journals Investigation of Genetic Diversity among Bread Wheat Cultivars (Triticum aestivum L.) Using SSR Markers

2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Reza Drikvand ◽  
Mohammad Reza Bihamta ◽  
Goodarz Najafian ◽  
Asa Ebrahimi
2010 ◽  
Vol 46 (11) ◽  
pp. 1320-1326 ◽  
Author(s):  
S. Achtar ◽  
M. Y. Moualla ◽  
A. Kalhout ◽  
M. S. Röder ◽  
N. MirAli

PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e17279 ◽  
Author(s):  
Chenyang Hao ◽  
Lanfen Wang ◽  
Hongmei Ge ◽  
Yuchen Dong ◽  
Xueyong Zhang

2005 ◽  
Vol 56 (7) ◽  
pp. 691 ◽  
Author(s):  
B. J. Stodart ◽  
M. Mackay ◽  
H. Raman

A set of 44 bread wheat landraces was used to determine the efficacy of 16 amplifed fragment length polymorphism (AFLP) primers and 63 wheat simple sequence repeat (SSR) markers in identifying polymorphisms between accessions. The SSR markers detected approximately 10 alleles per locus with a mean gene diversity (Hz) of 0.63, whereas AFLP primers identified approximately 147 fragments per primer with a mean gene diversity of 0.25. A set of 54 SSR markers and 11 AFLP primers was identified as highly polymorphic (polymorphic information content (PIC) ≥ 0.5 and 0.3 for SSR and AFLP, respectively), and suitable for molecular characterisation of germplasm. Principle coordinate analysis suggested that the AFLP and SSR loci could be used to discriminate among accessions collected from North Africa and southern Europe from those collected from the Middle East. Both marker types indicate that accessions from North Africa and southern Europe, the Middle East, and southern and eastern Asia are genetically diverse. The results indicate the usefulness of the molecular markers to assess genetic diversity present within germplasm collections.


Author(s):  
Ahmed Medhat Mohamed Al-Naggar ◽  
Mohamed Abd El-Maboud Abd El-Shafi ◽  
Mohamed Helmy El-Shal ◽  
Ali Hassan Anany

To increase the genetic progress in wheat (Triticum aestivum L.) yield, breeders search for germplasm of high genetic diversity, one of them is the landraces. The present study aimed at evaluating genetic diversity of 20 Egyptian wheat landraces and two cultivars using microsatellite markers (SSRs). Ten SSR markers amplified a total of 27 alleles in the set of 22 wheat accessions, of which 23 alleles (85.2%) were polymorphic. The majority of the markers showed high polymorphism information content (PIC) values (0.67-0.94), indicating the diverse nature of the wheat accessions and/or highly informative SSR markers used in this study. The genotyping data of the SSR markers were used to assess genetic variation in the wheat accessions by dendrogram. The highest genetic distance was found between G21 (Sakha 64; an Egyptian cultivar) and the landrace accession No. 9120 (G11). These two genotypes could be used as parents in a hybridization program followed by selection in the segregating generations, to identify some transgressive segregates of higher grain yield than both parents. The clustering assigned the wheat genotypes into four groups based on SSR markers. The results showed that the studied SSR markers, provided sufficient polymorphism and reproducible fingerprinting profiles for evaluating genetic diversity of wheat landraces. The analyzed wheat landraces showed a good level of genetic diversity at the molecular level. Molecular variation evaluated in this study of wheat landraces can be useful in traditional and molecular breeding programs.


2017 ◽  
Vol 16 (36) ◽  
pp. 1832-1839 ◽  
Author(s):  
Tekeu Honore ◽  
M. L. Ngonkeu Eddy ◽  
P. Djocgoue Francois ◽  
Ellis Aletta ◽  
Lendzemo Venasius ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document