scholarly journals A Box-behnken Design for Characterizing Chinese Truffles (Tuber indicum) Aroma by HS-SPME-GC-MS

2012 ◽  
Vol 1 (3) ◽  
pp. 219 ◽  
Author(s):  
Sanping Fang ◽  
Biao Pu ◽  
Anjun Chen ◽  
Kang Zhou ◽  
Xiaolin Ao ◽  
...  

<p class="keywords">The aim of the present investigation is to fully characterize the aroma of Chinese truffles (Tuber indicum) by headspace solid phase microextraction (HS-SPME). To develop an objective method to extract aroma compounds, four different fibers were studied and a Box-Behnken design (BBD) was applied. From the statistical analysis of the experimental result, it was able to determine that the most important factor was the extraction temperature and the optimum extraction conditions were as follows: extraction time 20.6 min, extraction temperature 52.4 <sup>o</sup>C and equilibrium time 6.8 min, By using gas chromatography mass spectrometry (GC-MS) analysis under the optimal conditions, it identified 24 compounds, three of which were reported for the first time in the Chinese truffle: 2-methylpropanal, 2,3-butanedione, 2-nonanone. And we found that the highest content compound was dimethyl sulfide, followed by 3-methylbutanal, 2-methylbutanal, 2-butanol and 1-pentanol, 1-octen-3-ol, all of those compounds were previously described as characteristic aroma of truffle.</p>

2015 ◽  
Vol 53 (3) ◽  
pp. 1009-1011 ◽  
Author(s):  
Timothy J. J. Inglis ◽  
Dorothee R. Hahne ◽  
Adam J. Merritt ◽  
Michael W. Clarke

Solid-phase microextraction gas chromatography-mass spectrometry (SPME-GCMS) was used to show that dimethyl sulfide produced byBurkholderia pseudomalleiis responsible for its unusual truffle-like smell and distinguishes the species fromBurkholderia thailandensis. SPME-GCMS can be safely used to detect dimethyl sulfide produced by agar-grownB. pseudomallei.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3208 ◽  
Author(s):  
Andrzej Białowiec ◽  
Monika Micuda ◽  
Antoni Szumny ◽  
Jacek Łyczko ◽  
Jacek Koziel

In this work, for the first time, the volatile organic compound (VOC) emissions from carbonized refuse-derived fuel (CRDF) were quantified on a laboratory scale. The analyzed CRDF was generated from the torrefaction of municipal waste. Headspace solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) was used to identify 84 VOCs, including many that are toxic, e.g., derivatives of benzene or toluene. The highest emissions were measured for nonanal, octanal, and heptanal. The top 10 most emitted VOCs contributed to almost 65% of the total emissions. The VOC mixture emitted from torrefied CRDF differed from that emitted by other types of pyrolyzed biochars, produced from different types of feedstock, and under different pyrolysis conditions. SPME was a useful technology for surveying VOC emissions. Results provide an initial database of the types and relative quantities of VOCs emitted from CRDF. This data is needed for further development of CRDF technology and comprehensive assessment of environmental impact and practical storage, transport, and potential adoption of CRDF as means of energy and resource recovery from municipal waste.


2018 ◽  
Vol 13 (8) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Armando A. Durant-Archibold ◽  
Noris Salazar Allen ◽  
Anette Garrido ◽  
Jose Gudiño Ledezma ◽  
Mahabir P. Gupta

We report for the first time the chemical composition of volatile components (VOCs) of two subspecies, D. hirsuta subsp. hirsuta and D. hirsuta subsp. nepalensis, of the liverwort Dumortiera hirsuta from Panama by using headspace-solid phase microextraction-gas chromatography-mass spectrometry in order to assess distinguishing markers between the two species. Forty VOCs were identified in total for both subspecies. Of these, 34 are reported for the first time in D. hirsuta. Furthermore, both subspecies showed clear differences in the type and amount of VOCs. The major compounds in D. hirsuta subsp. hirsuta were α-gurjunene, β-selinene, α-guaiene, α-humulene and β-caryophyllene; while in D. hirsuta subsp. nepalensis were ledene, α-gurjunene, β-caryophyllene and α-guaiene, respectively. Two oxygenated sesquiterpenes, globulol and nerolidol, could be considered as possible distinguishing chemical markers between these two subspecies. We conclude that both morphotypes of D. hirsuta are chemically different.


2020 ◽  
Vol 14 (3) ◽  
pp. 359-368
Author(s):  
Ruyi Sha ◽  
Haoan Fan ◽  
Zhenzhen Wang ◽  
Gaojian Wang ◽  
Yanli Cui ◽  
...  

A method based on solid phase microextraction coupled with gas chromatography mass spectrometry was developed for volatile profiling fermented perilla leaves jiaosu (PFJ) during fermentation. Five fibers were firstly evaluated by the total peak areas and the number of volatile compounds. Secondly, a Plackett-Burman design was applied to screen for seven independent variables selected in literature. Three significant variables (extraction time, extraction temperature and equilibrium time) were therefore selected for the following optimization studies. A Box-Behnken design combined with a steepest ascent was then used to optimize the significant factors. Under optimal conditions, the changes of volatile profiles of PFJ at 7, 14, 21, 28, 91 and 140 d were analyzed. A total of fifty-one volatile compounds were identified, and alcohols (68.12–78.94%) were the main volatile components in PFJ, followed by methoxy-phenolic compounds (4.67–5.48%). Perilla alcohol and trans-Shisool were the major constituents during spontaneous fermentation, which accounted for 16.14–30.66% and 19.95–24.52%, respectively. The results showed that PFJ fermented into a health probiotic product with characteristic flavour and functional volatile compounds.


2019 ◽  
Vol 14 (8) ◽  
pp. 1934578X1986887
Author(s):  
Anette Garrido ◽  
Jose Gudiño Ledezma ◽  
Armando A. Durant-Archibold ◽  
Noris Salazar Allen ◽  
Juan Carlos Villarreal A ◽  
...  

We report for the first time the chemical profiling of volatile organic compounds (VOCs) of gametophyte and sporophyte life stages of Leiosporoceros dussii, from Panama by using headspace-solid phase microextraction-gas chromatography-mass spectrometry in order to assess distinguishing chemical markers between the male and female gametophytes, and sporophytes of this hornwort. A total of 27 VOCs were identified in L. dussii. Furthermore, the gametophyte and sporophyte showed clear differences in the type and amount of VOCs. The main constituents of L. dussii female thalli were menthacamphor (17.8%), hexanol (12.3%), and menthyl acetate (12.3%), while the major compounds of the male thalli were hexanol (25.3%), β-ionone (21.1%), benzeneacetaldehyde (17.6%), and β-cyclocitral (14.0%). The main VOCs of the sporophytes were hexanal (19.3%), β-cyclocitral (17.6%), 2-nonenal (15.8%), hexanol (12.5%), and β-ionone (10.2%). Unique compounds found in the female thalli were 3-pentanone, 3-octenol, nonanol, estragole, and menthyl acetate, and in the male thalli were methyl heptenone, nonanal, neoisomenthol, and bornyl acetate. Isomenthol, thymol, isomenthol acetate, and β-methylnaphthalene were only found in the sporophyte. The characteristic VOCs identified in L. dussii suggest a difference between the chemical constituents of L. dussii and other hornworts species. The presence of simple VOCs when compared with compounds previously characterized in another hornwort genera may support the distinct genetic nature of this species.


2004 ◽  
Vol 59 (7-8) ◽  
pp. 533-537 ◽  
Author(s):  
Yun F. Sha ◽  
Shun Shen ◽  
Geng L. Duan

AbstractIn this paper, a headspace solid-phase microextraction (HS-SPME) method was applied to analyse the volatile compounds in a traditional Chinese medicine (TCM), Rhioxma Curcumae Aeruginosae. SPME parameters such as fibers, extraction temperature, extraction time and desorption time were investigated. Thirty-five volatile compounds were separated and identified. Relative standard deviations (RSDs) were less than 8.4%, showing that the method has a good reproducibility. The volatile constituents were also analyzed by steam distillation (SD) and thirty-seven compounds were identified. The similar results obtained by the two methods showed that SPME is a good alternative for the analysis of volatile constituents in Rhioxma Curcumae Aeruginosae samples and it is a relatively simple, rapid and solvent-free method.


Author(s):  
Ana Cristina Tanello ◽  
Cristine Durante de Souza Silveira ◽  
Eduardo Carasek ◽  
Silvani Verruck ◽  
Elane Schwinden Prudencio ◽  
...  

Two different yogurts, control and probiotic with Bifidobacterium BB-12 were produced and analyzed for their contents of total solids, proteins, pH, counts of probiotic bacteria, and volatile composition during refrigerated storage for 28 days. The response surface methodology (RSM) was used to optimize the extraction of volatile compounds from the probiotic yogurt containing through HS-SPME combined with gas chromatography–mass spectrometry (GC–MS). Post-acidification and decrease in protein content were noted in both yogurts during storage. The results showed that the extraction temperature and the addition of salt were statistically the most influential factors for the extraction of higher amounts of volatile compounds. The volatile compounds detected in the probiotic yogurt were 2-butanone, 2,3-butanedione, 2,3-pentanodione, acetone and hexanoic acid. During the 28 days of storage, the only differences noted were between the amounts of 2,3-butanedione, 2,3-pentanodione and hexanoic acid.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 115 ◽  
Author(s):  
Xian-kui Ma ◽  
Xiao-fei Li ◽  
Jian-yong Zhang ◽  
Jie Lei ◽  
Wei-wei Li ◽  
...  

Selaginella doederleinii (SD) is a perennial medicinal herb widely distributed in China. In this study, the volatile components of SD from two regions (24 batches), namely Zhejiang and Guizhou, were determined by combining headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME/GC-MS). After investigating different influence factors, the optimal conditions for extraction were as follows: The sample amount of 1 g, the polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber of 65 µm, the extraction time of 20 min, and the extraction temperature of 100 °C. Based on the above optimum conditions, 58 volatiles compounds, including 20 terpenes, 11 alkanes, 3 alcohols, 6 ketones, 3 esters, 11 aldehydes, 1 ether, 1 aromatic, 1 phenol, and 1 furan, were found and identified in SD. Furthermore, hierarchical cluster analysis and principal component analysis were successfully applied to distinguish the chemical constituents of SD from two regions. Additionally, anethol, zingerone, 2,4-di-tert-butylphenol, ledene, hexyl hexanoate, α-cadinol, phytone, hinesol, decanal, octadecene, cedren, 7-tetradecene, copaene, β-humulene, 2-butyl-2-octenal, tetradecane, cedrol, calacorene, 6-dodecanone, β-caryophyllene, 4-oxoisophorone, γ-nonanolactone, 2-pentylfuran, 1,2-epoxyhexadecane, carvacrol, n-pentadecane, diisobutyl phthalate, farnesene, n-heptadecane, linalool, 1-octen-3-ol, phytane, and β-asarone were selected as the potential markers for discriminating SD from 24 habitats in Zhejiang and Guizhou by partial least squares discrimination analysis (PLS-DA). This study revealed the differences in the components of SD from different regions, which could provide a reference for the future quality evaluation.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 390
Author(s):  
Ziyan Xu ◽  
Chuan Zhou ◽  
Haiming Shi ◽  
Hong Zhang ◽  
Yanlan Bi ◽  
...  

An efficient and effective multiple headspace-solid phase microextraction-arrow-gas chromatography-mass spectrometry (MHS-SPME-arrow-GCMS) analytical protocol is established and used to quantify the flavor compounds in oils. SPME conditions, such as fiber coating, pre-incubation temperature, extraction temperature, and time were studied. The feasibility was compared between SPME-arrow and the traditional fiber by loading different sample amounts. It was found that the SPME-arrow was more suitable for the MHS-SPME. The limit of detection (LODs) and limit of quantitation (LOQs) of pyrazines were in the range of 2–60 ng and 6–180 ng/g oil, respectively. The relative standard deviation (RSD) of both intra- and inter-day were lower than 16%. The mean recoveries for spiked pyrazines in rapeseed oil were in the range of 91.6–109.2%. Furthermore, this newly established method of MHS-SPME-arrow was compared with stable isotopes dilution analysis (SIDA) by using [2H6]-2-methyl-pyrazine. The results are comparable and indicate this method can be used for edible oil flavor analysis.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 59
Author(s):  
Sarah Fruehwirth ◽  
Sandra Egger ◽  
Thomas Flecker ◽  
Miriam Ressler ◽  
Nesrin Firat ◽  
...  

Margarine contains a minimum of 80% fat and is therefore prone to lipid oxidation. While lipid oxidation in vegetable oils and o/w emulsions has been thoroughly investigated, studies about the oxidative stability and the identification of potential indicators of lipid oxidation in margarine are scarce. To evaluate the oxidative stability and to indicate the progress of lipid oxidation, four different types of industrial margarine (M1–M4), which differed in their composition of the minor ingredients and the oil phase, were stored at 15 °C for 180 days and analyzed at days 0, 1, 7, 14, 28, 56, 99, and 180 regarding peroxides, conjugated dienes, oxidized triacylglycerols, and volatiles. The peroxide value and the conjugated dienes increased up to 4.76 ± 0.92 meq O2/kg oil and 14.7 ± 0.49 in M2, respectively. The oxidative stability decreased by a maximum of 50.9% in M4. We detected three different epoxidized triglycerides—TAG54:1 (O), TAG54:2 (O) and TAG54:3 (O)—in M3. Acetone could be identified, for the first time, as lipid oxidation product in stored margarine by headspace-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). It increased in all types of margarine during storage by a maximum of 1070 ppb in M2. Acetone might be used as a new indicator for lipid oxidation in margarine.


Sign in / Sign up

Export Citation Format

Share Document