scholarly journals Relationship between Seismic Activity and Variations in the Earth’s Rotation Angular Velocity

2018 ◽  
Vol 10 (2) ◽  
pp. 43 ◽  
Author(s):  
Elena Sasorova ◽  
Boris Levin

The Earth's seismic activity (SA) demonstrates a distinct unevenness both in space and in time. The periods of intensification of seismic activity are followed by periods of its decline. In this work, an attempt was first made to determine the effect of low-frequency components of the variations in the angular velocity of the Earth's rotation (AVER) on the dynamics of its seismic activity (for 1720 – 2017). Analysis of the time series of the density of seismic events and variations in the Earth's rotation velocity of about 300 years shows that each stage of reducing the angular velocity of rotation (braking) is accompanied by an increase in the density of seismic events, and the stages of increasing the angular velocity of rotation (acceleration) are accompanied by a decrease in the density of events. At present, the Earth is entering a new phase of deceleration (since 2005), which in recent years has already led to an increase in the global seismic activity.

2014 ◽  
Vol 35 ◽  
pp. 137-144 ◽  
Author(s):  
B. Levin ◽  
A. Domanski ◽  
E. Sasorova

Abstract. We analyzed what kind of fundamental physical phenomena can be responsible for the generation of the anomalous latitudinal zones of the seismic activity, and the hotspots, and some other geophysical processes. The assessment of tidal effect contribution to the earthquake preparation process is discussed. A disk model of the Earth's rotation was proposed. The model is acceptable for the homogeneous Earth and for the heterogeneous one. The disk model explains the nucleation of two maximums of the gradient of the moment of inertia over latitude with respect to the Equator. Effects of the variations in the Earth's rotation angular velocity were estimated and the possible features caused by the rotation velocity instability were described. The variations in the relative velocity of the Earth's rotation (dimensionless value ν ≈ (T − P)/P) are approximately equal upon the average to 10−8, where T is the observed length of day for the Earth, and P is the astronomical day. These variations lead to the occurrence of the additional energy estimated as 1020 J. The authors proposed the hypothesis of a pulsating geoid based on effects of the Earth's rotation features, and tidal forces, and conception of critical latitudes in the solid Earth. This hypothesis may highlight the phenomenon of zonal intensification of some geological processes in the solid Earth (the seismic activity, and hotspot location, and major ore deposit locations).


2021 ◽  
Author(s):  
Radosław Zajdel ◽  
Krzysztof Sośnica ◽  
Grzegorz Bury ◽  
Kamil Kazmierski

<p>Variations in the Earth's rotation can be examined in the low-frequency and high-frequency temporal scales. The low-frequency variations are dominated by the annual and Chandler wobbles, while the high-frequency variations are primarily caused by tidal effects and mass redistributions within the system Earth. Depending on the purpose, the Earth Rotation Parameters (ERPs) can be estimated in different time resolutions using space-geodetic techniques, especially using GNSS. However, the residual signals between different space geodetic techniques or satellite constellations indicate system-specific differences, which have to be correctly identified.</p><p>This research provides the daily, and sub-daily series of Earth Rotation Parameters (ERPs) estimated using GPS, GLONASS, and Galileo observations. We test different sampling intervals of estimated ERPs from 1h to 24h. The GNSS-based sub-daily estimates have been compared with the external models of variations in ERPs induced by the ocean tides from the IERS 2010 Conventions, a new model by Desai-Sibois, and the VLBI-based model by Gipson.</p><p>Any system-specific ERPs are affected by the orbital and draconitic signals. The orbital signals are visible in all system-specific ERPs at the periods that arise from the resonance between the Earth's rotation and the satellite revolution period, e.g., 8.87h, 34.22h, 3.4 days, 10 days for Galileo; 7.66h, 21.29h, 3.9 days, 7.9 days for GLONASS; 7.98h (S3 tidal term), 11.97h (S2 tidal term), 23.93h (S1 tidal term) for GPS. In the Galileo and GLONASS solutions, the artificial non-tidal signals' amplitudes can reach up to 30 µas. The GPS-derived sub-daily ERPs suffer from the overlapping periods of the diurnal and semidiurnal tidal terms and the harmonics of the GPS revolution period. After recovery of 38 sub-daily tidal terms, the Galileo-based model is more consistent with the external models than the GPS-based model, especially in the prograde diurnal band. The results confirmed that the Desai–Sibois model is more consistent with GNSS observations than the currently recommended model by the IERS 2010 Conventions. Moreover, GPS-based length-of-day (LoD) is systematically biased with respect to the IERS-C04-14 values with a mean offset of −22.4 µs/day, because of the deep resonance 2:1 between the satellite revolution period and the Earth rotation. The Galileo-based and GLONASS-based solutions are almost entirely free of this issue. Against the individual system-specific solutions, the multi-GNSS solution is not affected by most of the system-specific artifacts. Thus, multi-GNSS solutions are clearly beneficial for the estimation of both daily and sub-daily ERPs.</p>


2019 ◽  
Vol 484 (6) ◽  
pp. 729-733
Author(s):  
B. W. Levin ◽  
E. V. Sasorova ◽  
V. B. Gurianov ◽  
V. V. Yarmolyuk

Analysis of observations of the Earth's rotational velocity and volcanic activity of the planet from 1720 until 2015 suggests that higher volcanic activity temporally coincided with periods of decreased angular velocity of Earth's rotation (deceleration), and, vice versa, lower volcanic activity coincided with the periods of increased velocity of the Earth's rotation (acceleration). Our analysis employed the data from the catalog by the Smithsonian Institute, United States, in which each volcanic explosion had its own determined value of the Volcanic Explosivity Index (VEI). The total number of selected intensive eruptions with VEI > 4 was 160, including 25 eruptions with VEI > 5. At present (beginning from 2006), the Earth was entry in a deceleration phase and series of catastrophic eruptions reveals the tendency toward intensifying volcanic activity.


1966 ◽  
Vol 25 ◽  
pp. 323-325 ◽  
Author(s):  
B. Garfinkel

The paper extends the known solution of the Main Problem to include the effects of the higher spherical harmonics of the geopotential. The von Zeipel method is used to calculate the secular variations of orderJmand the long-periodic variations of ordersJm/J2andnJm,λ/ω. HereJmandJm,λare the coefficients of the zonal and the tesseral harmonics respectively, withJm,0=Jm, andωis the angular velocity of the Earth's rotation. With the aid of the theory of spherical harmonics the results are expressed in a most compact form.


2012 ◽  
Vol 19 (1-2) ◽  
Author(s):  
Josef Havíř ◽  
Jana Pazdírková ◽  
Zdeňka Sýkorová

On January 6, 2012, a moderate earthquake was observed in a region SE of Poznań (local magnitude ML = 3.6 according to Institute of Physics of the Earth, IPE). In this region, there haven‘t been known any historical earthquakes so far, and no natural seismic activity has been observed up to present. Similar rare occurrences of weak and moderate earthquakes were observed in a region near Kaliningrad in 2004 (sequence of events, local magnitude of strongest event being 5.0) and in south Moravia region near Znojmo in 2000 (local magnitude ML = 2.5). These facts show that even in seismically quiet regions occurence of weak to moderate seismic events (with value of magnitude ranging from 3 to 5) could be expected.


The Bermuda Triangle is located in the area of the archipelago between North and South America and the Dragon Triangle is located in the area of the archipelago in Southeast Asia. There is a great resemblance between these two triangular areas; both were formed following special geological and tectonic conditions. It is herein proposed that their creation stems from the change in location of the axis of rotation of the earth and, accordingly, the change in the location of the equator.


Author(s):  
L. V. Morrison ◽  
F. R. Stephenson ◽  
C. Y. Hohenkerk ◽  
M. Zawilski

Historical reports of solar eclipses are added to our previous dataset (Stephenson et al. 2016 Proc. R. Soc. A 472 , 20160404 ( doi:10.1098/rspa.2016.0404 )) in order to refine our determination of centennial and longer-term changes since 720 BC in the rate of rotation of the Earth. The revised observed deceleration is −4.59 ± 0.08 × 10 −22  rad s −2 . By comparison the predicted tidal deceleration based on the conservation of angular momentum in the Sun–Earth–Moon system is −6.39 ± 0.03 × 10 −22  rad s −2 . These signify a mean accelerative component of +1.8 ± 0.1 × 10 −22  rad s −2 . There is also evidence of an oscillatory variation in the rate with a period of about 14 centuries.


1985 ◽  
Vol 19 (1) ◽  
pp. 193-205 ◽  
Author(s):  
Ya. S. Yatskiv ◽  
W. J. Klepczynski ◽  
F. Barlier ◽  
H. Enslin ◽  
C. Kakuta ◽  
...  

During the period, work on the problem of the Earth’s rotation has continued to expand and increase its scope. The total number of institutions engaged in the determination of the Earth’s rotation parameters (ERP) by different techniques has been increased significantly. The rotation of the Earth is currently measured by classical astrometry, Doppler and laser satellite tracking, laser ranging of the Moon, and radio interferometry. Several long time series of the ERP are available from most of these techniques, in particular, those made during the Main Campaign of the MERIT project. The various series have been intercompared and their stability, in the time frame of years to days, has been estimated for the purposes of establishing a new conventional terrestrial reference system (COTES). On the other hand, the difficulties of maintaining a regular operation for laser ranging to the Moon (LLR) have been recognized. It resulted in the proposal to organize an one-month campaign of observations in 1985 in order to complement the COTES collocation program and to allow additional intercomparisons with other techniques.


1979 ◽  
Vol 82 ◽  
pp. 7-18 ◽  
Author(s):  
Bernard Guinot

With the advent of more precise methods for measuring Earth rotation, a number of corrections to the apparent directions in space, to the terrestrial references, and to the rotation axis motion have to be carefully applied. It is the duty of the international Astronomical Union to give recommended or conventional expressions of these corrections in order to avoid inextricable difficulties in discussing the evaluated results. However, this task is not sufficient. The concepts used in the description of the Earth's rotation are somewhat obscured by traditions. They should be purified by removing notions which are not directly relevant.


2019 ◽  
Vol 127 ◽  
pp. 03007
Author(s):  
Elena Blagoveshchenskaya ◽  
Evgenia Lyskova ◽  
Konstantin Sannikov

The problem of the correlation of the global dynamic phenomenon “Chandler wobble” with the local dynamics in different parts of the Earth’s crust and lithosphere is wide of the solution. In this study, an attempt was made to approach the solution by analyzing the temporal variations of local seismic activity in the restricted geospace volumes (GSV) within the uniform seismoactive regions. The driver of Chandler wobble is the deep mantle – the most hard and most massive Earth’s layer, whose large inertia tensor value is able to keep up Chandler’s specific rotation of the Earth for a long time. We use the geocentric coordinate system where daily rotation is absent. In this system Chandler wobble is very slow rotation of the Earth around the current equatorial axis (the pole of which is denoted as EP14). Probably, this slow rotation can influence on the seismic events in the GSV. This influence is proposed to determine by the some statistical parameter EP14gsv that indicates the most typical position EP14 on equator when the most part of the earthquakes have occurred in the given GSV. For some geospace volumes the distribution indicates certain longitudes, where the number of seismic events is maximal or minimal.


Sign in / Sign up

Export Citation Format

Share Document