scholarly journals Boundedness of Solutions for Second Order Differential Equations

2020 ◽  
Vol 12 (4) ◽  
pp. 58
Author(s):  
Daniel C. Biles

We present new theorems which specify sufficient conditions for the boundedness of all solutions for second order non-linear differential equations. Unboundedness of solutions is also considered.

Author(s):  
Paul W. Spikes

SynopsisSufficient conditions are given to insure that all solutions of a perturbed non-linear second-order differential equation have certain integrability properties. In addition, some continuability and boundedness results are given for solutions of this equation.


Author(s):  
N. Parhi

AbstractIn this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical linear differential equations of third order. Some of these results have been extended to non-linear equations.


Author(s):  
S. R. Grace

AbstractNew oscillation criteria are given for second order nonlinear ordinary differential equations with alternating coefficients. The results involve a condition obtained by Kamenev for linear differential equations. The obtained criterion for superlinear differential equations is a complement of the work established by Kwong and Wong, and Philos, for sublinear differential equations and by Yan for linear differential equations.


2012 ◽  
Vol 34 (1) ◽  
pp. 7-17
Author(s):  
Dao Huy Bich ◽  
Nguyen Dang Bich

The present paper deals with a class of non-linear ordinary second-order differential equations with exact solutions. A procedure for finding the general exact solution based on a known particular one is derived. For illustration solutions of some non-linear equations occurred in many problems of solid mechanics are considered.


The differential equations arising in most branches of applied mathematics are linear equations of the second order. Internal ballistics, which is the dynamics of the motion of the shot in a gun, requires, except with the simplest assumptions, the discussion of non-linear differential equations of the first and second orders. The writer has shown in a previous paper* how such non-linear equations arise when the pressure-index a in the rate-of-burning equation differs from unity, although only the simplified case of non-resisted motion was there considered. It is proposed in the present investigation to examine some cases of resisted motion taking the pressure-index equal to unity, to give some extensions of the previous work, and to consider, so far as is possible, the nature and the solution of the types of differential equations which arise.


Author(s):  
Ch. G. Philos

SynopsisThis paper deals with the oscillatory and asymptotic behaviour of all solutions of a class of nth order (n > 1) non-linear differential equations with deviating arguments involving the so called nth order r-derivative of the unknown function x defined bywhere r1, (i = 0,1,…, n – 1) are positive continuous functions on [t0, ∞). The results obtained extend and improve previous ones in [7 and 15] even in the usual case where r0 = r1 = … = rn–1 = 1.


1955 ◽  
Vol 51 (4) ◽  
pp. 604-613
Author(s):  
Chike Obi

1·1. A general problem in the theory of non-linear differential equations of the second order is: Given a non-linear differential equation of the second order uniformly almost periodic (u.a.p.) in the independent variable and with certain disposable constants (parameters), to find: (i) the non-trivial relations between these parameters such that the given differential equation has a non-periodic u.a.p. solution; (ii) the number of periodic and non-periodic u.a.p. solutions which correspond to each such relation; and (iii) explicit analytical expressions for the u.a.p. solutions when they exist.


Sign in / Sign up

Export Citation Format

Share Document