scholarly journals The Fundamental Matrix of the Simple Random Walk with Mixed Barriers

2016 ◽  
Vol 8 (6) ◽  
pp. 128
Author(s):  
Yao Elikem Ayekple ◽  
Derrick Asamoah Owusu ◽  
Nana Kena Frempong ◽  
Prince Kwaku Fefemwole

The simple random walk with mixed barriers at state $ 0 $ and state $ n $ defined on non-negative integers has transition matrix $ P $ with transition probabilities $ p_{ij} $. Matrix $ Q $ is obtained from matrix $ P $ when rows and columns at state $ 0 $ and state $ n $ are deleted . The fundamental matrix $ B $ is the inverse of the matrix $ A = I -Q $, where $ I $ is an identity matrix. The expected reflecting and absorbing time and reflecting and absorbing probabilities can be easily deduced once $ B $ is known. The fundamental matrix can thus be used to calculate the expected times and probabilities of NCD's.

1999 ◽  
Vol 36 (02) ◽  
pp. 320-333
Author(s):  
Howard M. Taylor

Consider the random walk {Sn} whose summands have the distributionP(X=0) = 1-(2/π), andP(X= ±n) = 2/[π(4n2−1)], forn≥ 1. This random walk arises when a simple random walk in the integer plane is observed only at those instants at which the two coordinates are equal. We derive the fundamental matrix, or Green function, for the process on the integral [0,N] = {0,1,…,N}, and from this, an explicit formula for the mean timexkfor the random walk starting fromS0=kto exit the interval. The explicit formula yields the limiting behavior ofxkasN→ ∞ withkfixed. For the random walk starting from zero, the probability of exiting the interval on the right is obtained. By lettingN→ ∞ in the fundamental matrix, the Green function on the interval [0,∞) is found, and a simple and explicit formula for the probability distribution of the point of entry into the interval (−∞,0) for the random walk starting fromk= 0 results. The distributions for some related random variables are also discovered.Applications to stress concentration calculations in discrete lattices are briefly reviewed.


1999 ◽  
Vol 10 (08) ◽  
pp. 1563-1569 ◽  
Author(s):  
ROBERT H. SWENDSEN ◽  
BRIAN DIGGS ◽  
JIAN-SHENG WANG ◽  
SHING-TE LI ◽  
CHRISTOPHER GENOVESE ◽  
...  

Although histogram methods have been extremely effective for analyzing data from Monte Carlo simulations, they do have certain limitations, including the range over which they are valid and the difficulties of combining data from independent simulations. In this paper, we describe a complementary approach to extracting information from Monte Carlo simulations that uses the matrix of transition probabilities. Combining the Transition Matrix with an N-fold way simulation technique produces an extremely flexible and efficient approach to rather general Monte Carlo simulations.


2003 ◽  
Vol 75 (3) ◽  
pp. 325-354 ◽  
Author(s):  
Daniela Bertacchi ◽  
Fabio Zucca

AbstractWe investigate the asymptotical behaviour of the transition probabilities of the simple random walk on the 2-comb. In particular, we obtain space-time uniform asymptotical estimates which show the lack of symmetry of this walk better than local limit estimates. Our results also point out the impossibility of getting sub-Gaussian estimates involving the spectral and walk dimensions of the graph.


1999 ◽  
Vol 36 (2) ◽  
pp. 320-333 ◽  
Author(s):  
Howard M. Taylor

Consider the random walk {Sn} whose summands have the distribution P(X=0) = 1-(2/π), and P(X = ± n) = 2/[π(4n2−1)], for n ≥ 1. This random walk arises when a simple random walk in the integer plane is observed only at those instants at which the two coordinates are equal. We derive the fundamental matrix, or Green function, for the process on the integral [0,N] = {0,1,…,N}, and from this, an explicit formula for the mean time xk for the random walk starting from S0 = k to exit the interval. The explicit formula yields the limiting behavior of xk as N → ∞ with k fixed. For the random walk starting from zero, the probability of exiting the interval on the right is obtained. By letting N → ∞ in the fundamental matrix, the Green function on the interval [0,∞) is found, and a simple and explicit formula for the probability distribution of the point of entry into the interval (−∞,0) for the random walk starting from k = 0 results. The distributions for some related random variables are also discovered.Applications to stress concentration calculations in discrete lattices are briefly reviewed.


1976 ◽  
Vol 13 (02) ◽  
pp. 355-356 ◽  
Author(s):  
Aidan Sudbury

Particles are situated on a rectangular lattice and proceed to invade each other's territory. When they are equally competitive this creates larger and larger blocks of one type as time goes by. It is shown that the expected size of such blocks is equal to the expected range of a simple random walk.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 729
Author(s):  
Miquel Montero

Random walks with invariant loop probabilities comprise a wide family of Markov processes with site-dependent, one-step transition probabilities. The whole family, which includes the simple random walk, emerges from geometric considerations related to the stereographic projection of an underlying geometry into a line. After a general introduction, we focus our attention on the elliptic case: random walks on a circle with built-in reflexing boundaries.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


Sign in / Sign up

Export Citation Format

Share Document