scholarly journals Heat Transfer Model of Multilayer Thermal Protective Clothing for High-Temperature Operation

2019 ◽  
Vol 13 (11) ◽  
pp. 21
Author(s):  
Man-Jing Li ◽  
Mao Zhu ◽  
Jia-Xu Han ◽  
Yuan-Biao Zhang

The thermal protective clothing for high-temperature operation usually consists of three-layer fabrics and a gap called the air layer or Layer IV between Layer III and skin. In order to design more effective thermal protective clothing at less cost, based on the heat transfer principles, we establish heat transfer models of fabrics and air layer, which are one-dimensional nonlinear partial differential equations with constant coefficients. In the three-layer fabrics, we consider the effects of heat conduction and heat radiation in Layer I but only consider heat conduction in Layer II and Layer III. Furthermore, the heat transfer model of Layer IV is decoupled and simplified to steady-state heat conduction in Layer IV and radiation heat transfer on surface of Layer IV. According to the explicit difference schemes for the models, we use the parameters in an experiment which puts a thermal manikin in high-temperature environment for some time and measures the temperature of lateral skin at regular time, to solve the models and calculate the temperature of each layer. With MATLAB, the visual interface of three-dimensional temperature distribution is provided, which is reference for functional design of thermal protective clothing. We also compare the simulation result of skin surface with the experimental data. The results show that at the same position, the temperature rises over time but with decreasing rate and finally reaches the steady state. Moreover, at one moment after reaching the steady state, the temperature has a gradual decrease with the increase of distance from the external environment.

2016 ◽  
Vol 685 ◽  
pp. 90-93
Author(s):  
Alexander Yu. Chebotarev ◽  
Andrey E. Kovtanyuk

A boundary multiplicative control problem for a nonlinear steady-state heat transfer model accounting for heat radiation effects is considered. The aim of control consists in obtaining a prescribed temperature or radiative intensity distributions in a part of the model domain by controlling the boundary reflectivity. The solvability of this control problem is proved, and optimality conditions are derived.


2014 ◽  
Vol 924 ◽  
pp. 329-335 ◽  
Author(s):  
Cong Hang Li ◽  
Shi Chen Jiang ◽  
Zheng Ping Yao ◽  
Song Sheng ◽  
Xin Jian Jiang ◽  
...  

Based on the nanoporous network structure features of silica aerogel, the gas-solid coupled heat transfer model of silica aerogel is analyzed, and the calculation formulas of the gas-solid coupled, the gas thermal conductivity and the heat radiation within the aerogel are derived. The thermal conductivity of pure silica aerogel is calculated according to the derived heat transfer model and is also experimentally measured. Moreover, measurements on the thermal conductivities of silica aerogel composites with different densities at ambient conditions are performed. And finally, a novel design of silica aerogel based integrated structure and thermal insulation used for withstanding the harsh thermal environment on the Martin surface is presented.


2009 ◽  
Vol 24 (4) ◽  
pp. 864-868 ◽  
Author(s):  
Hong-Shun HAO ◽  
Li-Hua XU ◽  
Yong HUANG ◽  
Zhi-Peng XIE ◽  
Xiao-Meng ZHANG ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Feng Xu ◽  
Ling-Yu Mo ◽  
Hong Chen ◽  
Jia-Ming Zhu

For the clothing design for high-temperature operation, the theory or method such as partial differential, nonlinear programming and finite difference method was first applied to construct the overall heat transfer model of “high temperature environment--clothing--air layer--skin” and draw the temperature distribution map. Secondly, according to the human body burn model, the optimal parameters of fabric thickness are obtained preliminarily. Finally, the weights and thresholds of BP neural network were optimized by genetic algorithm, and these optimized values were assigned to the optimized BP neural network, and the nonlinear thickness function was approximated and optimized with MATLAB.


Sign in / Sign up

Export Citation Format

Share Document