"Show Me the Energy Costs": Short and Long-term Energy Cost Disclosure Effects on Willingness-to-pay for Residential Energy Efficiency

2022 ◽  
Vol 43 (3) ◽  
Author(s):  
James Carroll ◽  
Claudia Aravena ◽  
Marco Boeri ◽  
Eleanor Denny
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1109
Author(s):  
Robert Bock ◽  
Björn Kleinsteinberg ◽  
Bjørn Selnes-Volseth ◽  
Odne Stokke Burheim

For renewable energies to succeed in replacing fossil fuels, large-scale and affordable solutions are needed for short and long-term energy storage. A potentially inexpensive approach of storing large amounts of energy is through the use of a concentration flow cell that is based on cheap and abundant materials. Here, we propose to use aqueous iron chloride as a reacting solvent on carbon electrodes. We suggest to use it in a red-ox concentration flow cell with two compartments separated by a hydrocarbon-based membrane. In both compartments the red-ox couple of iron II and III reacts, oxidation at the anode and reduction at the cathode. When charging, a concentration difference between the two species grows. When discharging, this concentration difference between iron II and iron III is used to drive the reaction. In this respect it is a concentration driven flow cell redox battery using iron chloride in both solutions. Here, we investigate material combinations, power, and concentration relations.


2019 ◽  

Programs that encouraged investments in residential energy efficiency had limited returns in several impact evaluations in real-world settings. Relatively small impacts on energy savings coupled with low take-up meant that encouraging these investments through information campaigns and subsidies was not a cost-effective strategy to reduce greenhouse gas emissions.


Sign in / Sign up

Export Citation Format

Share Document