scholarly journals Strongly Extreme Points and Approximation Properties

2018 ◽  
Vol 61 (3) ◽  
pp. 449-457
Author(s):  
Trond A. Abrahamsen ◽  
Petr Hájek ◽  
Olav Nygaard ◽  
Stanimir L. Troyanski

AbstractWe show that if x is a strongly extreme point of a bounded closed convex subset of a Banach space and the identity has a geometrically and topologically good enough local approximation at x, then x is already a denting point. It turns out that such an approximation of the identity exists at any strongly extreme point of the unit ball of a Banach space with the unconditional compact approximation property. We also prove that every Banach space with a Schauder basis can be equivalently renormed to satisfy the suõcient conditions mentioned.

Author(s):  
Eve Oja ◽  
Indrek Zolk

Let a, c ≥ 0 and let B be a compact set of scalars. We show that if X is a Banach space such that the canonical projection π from X*** onto X* satisfies the inequalityand 1 ≤ λ < max |B| + c, then every λ-commuting bounded compact approximation of the identity of X is shrinking. This generalizes a theorem by Godefroy and Saphar from 1988. As an application, we show that under the conditions described above both X and X* have the metric compact approximation property (MCAP). Relying on the Willis construction, we show that the commuting MCAP does not imply the approximation property.


2004 ◽  
Vol 77 (1) ◽  
pp. 91-110 ◽  
Author(s):  
Åsvald Lima ◽  
Eve Oja

AbstractWe give an example of a Banach space X such that K (X, X) is not an ideal in K (X, X**). We prove that if z* is a weak* denting point in the unit ball of Z* and if X is a closed subspace of a Banach space Y, then the set of norm-preserving extensions H B(x* ⊗ z*) ⊆ (Z*, Y)* of a functional x* ⊗ Z* ∈ (Z ⊗ X)* is equal to the set H B(x*) ⊗ {z*}. Using this result, we show that if X is an M-ideal in Y and Z is a reflexive Banach space, then K (Z, X) is an M-ideal in K(Z, Y) whenever K (Z, X) is an ideal in K (Z, Y). We also show that K (Z, X) is an ideal (respectively, an M-ideal) in K (Z, Y) for all Banach spaces Z whenever X is an ideal (respectively, an M-ideal) in Y and X * has the compact approximation property with conjugate operators.


1967 ◽  
Vol 19 ◽  
pp. 312-320 ◽  
Author(s):  
Frank Forelli

Let R be an open Riemann surface. ƒ belongs to H1(R) if ƒ is holomorphic on R and if the subharmonic function |ƒ| has a harmonie majorant on R. Let p be in R and define ||ƒ|| to be the value at p of the least harmonic majorant of |ƒ|. ||ƒ|| is a norm on the linear space H1(R), and with this norm H1(R) is a Banach space (7). The unit ball of H1(R) is the closed convex set of all ƒ in H1(R) with ||ƒ|| ⩽ 1. Problem: What are the extreme points of the unit ball of H1(R)? de Leeuw and Rudin have given a complete solution to this problem where R is the open unit disk (1).


1979 ◽  
Vol 31 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Frank Forelli

1.1. We will denote by B the open unit ball in Cn, and we will denote by H(B) the class of all holomorphic functions on B. LetThus N(B) is convex (and compact in the compact open topology). We think that the structure of N(B) is of interest and importance. Thus we proved in [1] that if(1.1)if(1.2)and if n≧ 2, then g is an extreme point of N(B). We will denote by E(B) the class of all extreme points of N(B). If n = 1 and if (1.2) holds, then as is well known g ∈ E(B) if and only if(1.3)


Author(s):  
Douglas Mupasiri

AbstractWe give a characterization of complex extreme measurable selections for a suitable set-valued map. We use this result to obtain necessary and sufficient conditions for a function to be a complex extreme point of the closed unit ball of Lp (ω, Σ, ν X), where (ω, σ, ν) is any positive, complete measure space, X is a separable complex Banach space, and 0 < p < ∞.


2022 ◽  
Author(s):  
◽  
Long Qian

<p><b>We investigate the geometry of effective Banach spaces, namely a sequenceof approximation properties that lies in between a Banach space having a basis and the approximation property.</b></p> <p>We establish some upper bounds on suchproperties, as well as proving some arithmetical lower bounds. Unfortunately,the upper bounds obtained in some cases are far away from the lower bound.</p> <p>However, we will show that much tighter bounds will require genuinely newconstructions, and resolve long-standing open problems in Banach space theory.</p> <p>We also investigate the effectivisations of certain classical theorems in Banachspaces.</p>


1993 ◽  
Vol 24 (2) ◽  
pp. 135-147
Author(s):  
A. AL-ZAMEL ◽  
R. KHALIL

Let $X$ be a Banach space with the approximation property, and $C(I,X)$ the space of continuous functions defined on $I = [0,1)$ with values in $X$. Let $u_i \in C(I,X)$, $i=1,2,\cdots, n$ and $M=span\{u_1, \cdots, u_n\}$. The object of this paper is to prove that if $\{u_1, \cdots, u_n\}$ satisfies certain conditions, then for $f \in C(I,X)$ and $g \in M$ we have $||f-g|| = \inf\{||f-h|| : h\in M\}$ if and only if $f-g$ has at least $n$-zeros. An application to best local approximation in $C(I,X)$ is given.


2012 ◽  
Vol 110 (1) ◽  
pp. 45 ◽  
Author(s):  
Åsvald Lima ◽  
Vegard Lima ◽  
Eve Oja

Let $X$ be a Banach space and let $\mathcal I$ be the Banach operator ideal of integral operators. We prove that $X$ has the $\lambda$-bounded approximation property ($\lambda$-BAP) if and only if for every operator $T\in \mathcal I(X,C[0,1]^*)$ there exists a net $(S_\alpha)$ of finite-rank operators on $X$ such that $S_\alpha\to I_X$ pointwise and 26767 \limsup_\alpha\|TS_\alpha\|_{\mathcal I}\leq\lambda\|T\|_{\mathcal I}. 26767 We also prove that replacing $\mathcal I$ by the ideal $\mathcal N$ of nuclear operators yields a condition which is equivalent to the weak $\lambda$-BAP.


1972 ◽  
Vol 6 (3) ◽  
pp. 355-356
Author(s):  
J.A. Johnson

It is shown how a result of S.R. Caradus on the approximation problem can be obtained from known theorems.Terms used here are standard (see [1] or [3]).Let X denote a Banach space, S its unit ball in the weak topology, and X* the dual of X. In [1], the following theorem is proved: (I) If X is reflexive and X* (considered as a subspaoe of the continuous scalar-valued functions C(S) in the canonical way) is complemented in C(S), then X has the approximation property.It is our purpose to point out that (I) is a corollary to some known theorems that yield the stronger conclusion (II) below.


2018 ◽  
Vol 61 (2) ◽  
pp. 487-500
Author(s):  
KEVIN BEANLAND ◽  
NOAH DUNCAN ◽  
MICHAEL HOLT ◽  
JAMES QUIGLEY

AbstractA norm ‖ċ‖ on c00 is called combinatorial if there is a regular family of finite subsets $\mathcal{F}$, so that $\|x\|=\sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|$. We prove the set of extreme points of the ball of a combinatorial Banach space is countable. This extends a theorem of Shura and Trautman. The second contribution of this article is to exhibit many new examples of extreme points for the unit ball of dual Tsirelson's original space and give an explicit construction of an uncountable collection of extreme points of the ball of Tsirelson's original space. We also prove some stability properties of the intermediate norms used to define Tsirelson's space and give a lower bound of the stabilization function for these intermediate norms.


Sign in / Sign up

Export Citation Format

Share Document