scholarly journals On approximate solutions of a certain hyperbolic partial differential equation

2011 ◽  
Vol 42 (1) ◽  
pp. 95-104
Author(s):  
B. G. Pachpatte

In this paper we study approximatesolutions of a certain hyperbolic partial differential equation withthe given initial boundary conditions. A variant of a certainfundamental integral inequality with explicit estimate is used toestablish the results. The discrete analogues of the main resultsare also given.

Author(s):  
Olusola Akinyele

We present a new non-linear integral inequality of the Gronwall-Bellman-Bihari type inn-independent variables with application to pointwise estimates of solutions of a certain class of non-linear hyperbolic partial differential equation.


2021 ◽  
pp. 1-20
Author(s):  
STEPHEN TAYLOR ◽  
XUESHAN YANG

Abstract The functional partial differential equation (FPDE) for cell division, $$ \begin{align*} &\frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t))\\ &\quad = -(b(x,t)+\mu(x,t))n(x,t)+b(\alpha x,t)\alpha n(\alpha x,t)+b(\beta x,t)\beta n(\beta x,t), \end{align*} $$ is not amenable to analytical solution techniques, despite being closely related to the first-order partial differential equation (PDE) $$ \begin{align*} \frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t)) = -(b(x,t)+\mu(x,t))n(x,t)+F(x,t), \end{align*} $$ which, with known $F(x,t)$ , can be solved by the method of characteristics. The difficulty is due to the advanced functional terms $n(\alpha x,t)$ and $n(\beta x,t)$ , where $\beta \ge 2 \ge \alpha \ge 1$ , which arise because cells of size x are created when cells of size $\alpha x$ and $\beta x$ divide. The nonnegative function, $n(x,t)$ , denotes the density of cells at time t with respect to cell size x. The functions $g(x,t)$ , $b(x,t)$ and $\mu (x,t)$ are, respectively, the growth rate, splitting rate and death rate of cells of size x. The total number of cells, $\int _{0}^{\infty }n(x,t)\,dx$ , coincides with the $L^1$ norm of n. The goal of this paper is to find estimates in $L^1$ (and, with some restrictions, $L^p$ for $p>1$ ) for a sequence of approximate solutions to the FPDE that are generated by solving the first-order PDE. Our goal is to provide a framework for the analysis and computation of such FPDEs, and we give examples of such computations at the end of the paper.


Author(s):  
Aydin Secer

In this work, we consider the hyperbolic equations to determine the approximate solutions via Sinc-Galerkin Method (SGM). Without any numerical integration, the partial differential equation transformed to an algebraic equation system. For the numerical calculations, Maple is used. Several numerical examples are investigated and the results determined from the method are compared with the exact solutions. The results are illustrated both in the table and graphically.


2018 ◽  
Vol 8 (1) ◽  
pp. 26
Author(s):  
Indriati Retno Palupi ◽  
Wiji Raharjo ◽  
Eko Wibowo ◽  
Hafiz Hamdalah

One way to solve fluid dynamics problem is using partial differential equation. By using Taylor expansion, fluid dynamics can be applied simply. For the example is tsunami wave. It is include to hyperbolic partial differential equation, tsunami wave propagation can describe in space and time function by using Euler FTCS (Forward Time Central Space) formula.


Sign in / Sign up

Export Citation Format

Share Document