Monte Carlo Simulation of Ion Implantation Profiles Calibrated for Various Ions over Wide Energy Range

2009 ◽  
Vol 9 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Kunihiro Suzuki ◽  
Yoko Tada ◽  
Yuji Kataoka ◽  
Tsutomu Nagayama
2000 ◽  
Vol 71 (2) ◽  
pp. 952-954 ◽  
Author(s):  
K. Tokiguchi ◽  
T. Seki ◽  
J. Ito ◽  
T. Sato ◽  
K. Mera

2021 ◽  
Vol 16 (12) ◽  
pp. P12011
Author(s):  
D. Ponomarev ◽  
D. Filosofov ◽  
J. Khushvaktov ◽  
A. Lubashevskiy ◽  
I. Rozova ◽  
...  

Abstract Novel NaIL detector (5 × 6 inch) was investigated for its neutron detection in wide energy range. It has been found that the detector together with its known ability to detect the γ-radiation it also allows to distinguish neutron signals in three quasi-independent ways. It is sensitive to neutron fluxes on a level down to 10-3 cm-2 s-1. In this work intrinsic α-background and neutron detection sensitivity for the NaIL detector were obtained. Experimental data was compared with results of Geant4 Monte Carlo (MC).


2005 ◽  
Vol 2 (6) ◽  
pp. 480-484 ◽  
Author(s):  
Yoshiko Miyagawa ◽  
Masaaki Tanaka ◽  
Hiroshi Nakadate ◽  
Masami Ikeyama ◽  
Soji Miyagawa

ACS Nano ◽  
2012 ◽  
Vol 6 (10) ◽  
pp. 8728-8734 ◽  
Author(s):  
Masato Nakaya ◽  
Masaya Shikishima ◽  
Masahiro Shibuta ◽  
Naoyuki Hirata ◽  
Toyoaki Eguchi ◽  
...  

2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Marzhan Nassurlla ◽  
N. Burtebayev ◽  
B. K. Karakozov ◽  
S. B. Sakuta ◽  
I. Boztosun ◽  
...  

2013 ◽  
Vol 21 (1) ◽  
pp. 273-279 ◽  
Author(s):  
L. Xue ◽  
R. Reininger ◽  
Y.-Q. Wu ◽  
Y. Zou ◽  
Z.-M. Xu ◽  
...  

A new ultrahigh-energy-resolution and wide-energy-range soft X-ray beamline has been designed and is under construction at the Shanghai Synchrotron Radiation Facility. The beamline has two branches: one dedicated to angle-resolved photoemission spectroscopy (ARPES) and the other to photoelectron emission microscopy (PEEM). The two branches share the same plane-grating monochromator, which is equipped with four variable-line-spacing gratings and covers the 20–2000 eV energy range. Two elliptically polarized undulators are employed to provide photons with variable polarization, linear in every inclination and circular. The expected energy resolution is approximately 10 meV at 1000 eV with a flux of more than 3 × 1010 photons s−1at the ARPES sample positions. The refocusing of both branches is based on Kirkpatrick–Baez pairs. The expected spot sizes when using a 10 µm exit slit are 15 µm × 5 µm (horizontal × vertical FWHM) at the ARPES station and 10 µm × 5 µm (horizontal × vertical FWHM) at the PEEM station. The use of plane optical elements upstream of the exit slit, a variable-line-spacing grating and a pre-mirror in the monochromator that allows the influence of the thermal deformation to be eliminated are essential for achieving the ultrahigh-energy resolution.


Sign in / Sign up

Export Citation Format

Share Document