Self-powered High-performance Full-wave Rectifier with a Vibration Detection Function for Energy Harvesting Applications

2017 ◽  
Vol 17 (6) ◽  
pp. 815-824
Author(s):  
Eun-Jung Yoon ◽  
Chong-Gun Yu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amir Muhammad Afzal ◽  
In-Gon Bae ◽  
Yushika Aggarwal ◽  
Jaewoo Park ◽  
Hye-Ryeon Jeong ◽  
...  

AbstractHybrid organic–inorganic perovskite materials provide noteworthy compact systems that could offer ground-breaking architectures for dynamic operations and advanced engineering in high-performance energy-harvesting optoelectronic devices. Here, we demonstrate a highly effective self-powered perovskite-based photodiode with an electron-blocking hole-transport layer (NiOx). A high value of responsivity (R = 360 mA W−1) with good detectivity (D = 2.1 × 1011 Jones) and external quantum efficiency (EQE = 76.5%) is achieved due to the excellent interface quality and suppression of the dark current at zero bias voltage owing to the NiOx layer, providing outcomes one order of magnitude higher than values currently in the literature. Meanwhile, the value of R is progressively increased to 428 mA W−1 with D = 3.6 × 1011 Jones and EQE = 77% at a bias voltage of − 1.0 V. With a diode model, we also attained a high value of the built-in potential with the NiOx layer, which is a direct signature of the improvement of the charge-selecting characteristics of the NiOx layer. We also observed fast rise and decay times of approximately 0.9 and 1.8 ms, respectively, at zero bias voltage. Hence, these astonishing results based on the perovskite active layer together with the charge-selective NiOx layer provide a platform on which to realise high-performance self-powered photodiode as well as energy-harvesting devices in the field of optoelectronics.


2018 ◽  
Vol 6 (34) ◽  
pp. 16439-16449 ◽  
Author(s):  
Mengjun Wu ◽  
Ting Zheng ◽  
Haiwu Zheng ◽  
Jifang Li ◽  
Weichao Wang ◽  
...  

A flexible piezoelectric nanogenerator (PENG) was fabricated based on a new inorganic piezoelectric KNN–BNZ–AS–Fe, which exhibited the great potential in energy harvesting and self-powered mechanosensing.


2018 ◽  
Vol 144 ◽  
pp. 55-63 ◽  
Author(s):  
C.C. Jin ◽  
X.C. Liu ◽  
C.H. Liu ◽  
Y. Wang ◽  
H.L. Hwang ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 32-57 ◽  
Author(s):  
Huamei Wang ◽  
Liang Xu ◽  
Zhonglin Wang

The ocean is an enormous source of blue energy, whose exploitation is greatly beneficial for dealing with energy challenges for human beings. As a new approach for harvesting ocean blue energy, triboelectric nanogenerators (TENGs) show superiorities in many aspects over traditional technologies. Here, recent advances of TENGs for harvesting blue energy are reviewed, mainly focusing on advanced designs of TENG units for enhancing the performance, through which the response of the TENG unit to slow water agitations and the output power of the device are largely improved. Networking strategy and power management are also briefly discussed. As a promising clean energy technology, blue energy harvesting based on TENGs is expected to make great contributions for achieving carbon neutrality and developing self-powered marine systems.


RSC Advances ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 5941-5945 ◽  
Author(s):  
Y. Qiu ◽  
D. C. Yang ◽  
B. Yin ◽  
J. X. Lei ◽  
H. Q. Zhang ◽  
...  

Branched ZnO nanotrees have been successfully synthesized on flexible fiber-paper substrates for realizing high-performance piezoelectric nanogenerators. And the output voltage of the NG increased to 0.1 V, enough to power some micro/nano devices.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yerzhan Nurmakanov ◽  
Gulnur Kalimuldina ◽  
Galymzhan Nauryzbayev ◽  
Desmond Adair ◽  
Zhumabay Bakenov

Abstract Harvesting abundant mechanical energy has been considered one of the promising technologies for developing autonomous self-powered active sensors, power units, and Internet-of-Things devices. Among various energy harvesting technologies, the triboelectric harvesters based on contact electrification have recently attracted much attention because of their advantages such as high performance, light weight, and simple design. Since the first triboelectric energy-harvesting device was reported, the continuous investigations for improving the output power have been carried out. This review article covers various methods proposed for the performance enhancement of triboelectric nanogenerators (TENGs), such as a triboelectric material selection, surface modification through the introduction of micro-/nano-patterns, and surface chemical functionalization, injecting charges, and their trapping. The main purpose of this work is to highlight and summarize recent advancements towards enhancing the TENG technology performance through implementing different approaches along with their potential applications. Graphic Abstract This paper presents a comprehensive review of the TENG technology and its factors affecting the output power as material selection, surface physical and chemical modification, charge injection, and trapping techniques.


Nano Energy ◽  
2018 ◽  
Vol 53 ◽  
pp. 550-558 ◽  
Author(s):  
Xiujian Chou ◽  
Jie Zhu ◽  
Shuo Qian ◽  
Xushi Niu ◽  
Jichao Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document