Low-Cost, High-Performance Piezoelectric Nanocomposite for Mechanical Energy Harvesting

2021 ◽  
pp. 1-1
Author(s):  
Nadeem Tariq Beigh ◽  
Dhiman Mallick
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ye ◽  
Shaojun Dong ◽  
Jing Ren ◽  
Shengjie Ling

AbstractEnergy harvesting textiles (EHTs) have attracted much attention in wearable electronics and the internet-of-things for real-time mechanical energy harvesting associated with human activities. However, to satisfy practical application requirements, especially the demand for long-term use, it is challenging to construct an energy harvesting textile with elegant trade-off between mechanical and triboelectric performance. In this study, an energy harvesting textile was constructed using natural silk inspired hierarchical structural designs combined with rational material screening; this design strategy provides multiscale opportunities to optimize the mechanical and triboelectric performance of the final textile system. The resulting EHTs with traditional advantages of textiles showed good mechanical properties (tensile strength of 237 ± 13 MPa and toughness of 4.5 ± 0.4 MJ m−3 for single yarns), high power output (3.5 mW m−2), and excellent structural stability (99% conductivity maintained after 2.3 million multi-type cyclic deformations without severe change in appearance), exhibiting broad application prospects in integrated intelligent clothing, energy harvesting, and human-interactive interfaces.


2019 ◽  
Vol 7 (27) ◽  
pp. 8277-8286 ◽  
Author(s):  
Thitirat Charoonsuk ◽  
Saichon Sriphan ◽  
Chanisa Nawanil ◽  
Narong Chanlek ◽  
Wanwilai Vittayakorn ◽  
...  

This research successfully demonstrated a facile, effective and scalable preparation of BaTiO3 nanowires (BT-NWs) via the template-free salt flux assisted method. High-performance lead-free flexible piezoelectric nanogenerator using BT-NWs was proposed in this work.


2020 ◽  
Vol 6 (24) ◽  
pp. eaay5065 ◽  
Author(s):  
Yeon Sik Choi ◽  
Sung Kyun Kim ◽  
Michael Smith ◽  
Findlay Williams ◽  
Mary E. Vickers ◽  
...  

Dipole alignment in ferroelectric polymers is routinely exploited for applications in charge-based applications. Here, we present the first experimental realization of ideally ordered dipole alignment in α-phase nylon-11 nanowires. This is an unprecedented discovery as dipole alignment is typically only ever achieved in ferroelectric polymers using an applied electric field, whereas here, we achieve dipole alignment in as-fabricated nanowires of ‘non-ferroelectric’ α-phase nylon-11, an overlooked polymorph of nylon proposed 30 years ago but never practically realized. We show that the strong hydrogen bonding in α-phase nylon-11 serves to enhance the molecular ordering, resulting in exceptional intensity and thermal stability of surface potential. This discovery has profound implications for the field of triboelectric energy harvesting, as the presence of an enhanced surface potential leads to higher mechanical energy harvesting performance. Our approach therefore paves the way towards achieving robust, high-performance mechanical energy harvesters based on this unusual ordered phase of nylon-11.


Author(s):  
Chih-Yu Chang ◽  
Jia-Ruei Yang ◽  
Chia-Jung Lee

Triboelectric nanogenerator (TENG) that converts mechanical energy into electricity has been considered as an economical strategy for energy harvesting. Modification of the surface property of the triboelectric materials is a...


2018 ◽  
Vol 6 (30) ◽  
pp. 14546-14552 ◽  
Author(s):  
Yong Zhang ◽  
Chang Kyu Jeong ◽  
Tiannan Yang ◽  
Huajun Sun ◽  
Long-Qing Chen ◽  
...  

A bioinspired architecture of piezoceramics is developed for new composite structures overcoming the major limitations of the current piezoelectric polymer composites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luis Felipe Gerlein ◽  
Jaime Alberto Benavides-Guerrero ◽  
Sylvain G. Cloutier

AbstractOn the long road towards low-cost flexible hybrid electronics, integration and printable solar energy harvesting solutions, there is an urgent need for high-performance transparent conductive electrodes produced using manufacturing-ready techniques and equipment. In recent years, randomly-distributed metallic nanowire-based transparent mesh electrodes have proven highly-promising as they offer a superb compromise between high performances and low fabrication costs. Unfortunately, these high figure-of-merit transparent mesh electrodes usually rely heavily on extensive post-deposition processing. While conventional thermal annealing yields good performances, it is especially ill-suited for deposition on low-temperature substrates or for high-throughput manufacturing solutions. Similarly, laser-induced annealing severely limits the processing time for electrodes covering large surfaces. In this paper, we report the fabrication of ultra high-performance silver nanowires-based transparent conductive electrodes fabricated using optimized manufacturing-ready ultrafast photonic curing solutions. Using conventional indium tin oxide (ITO) as our benchmark for transparent electrodes, we demonstrate a 2.6–2.7 $$\times $$ × performance gain using two different figure-of-merit indicators. Based on these results, we believe this research provides an ideal manufacturing-ready approach for the large-scale and low-cost fabrication of ultra high-performance transparent electrodes for flexible hybrid electronics and solar-energy harvesting applications.


Sign in / Sign up

Export Citation Format

Share Document