Magma-discharge rate and geochemical evolution during the pumice-eruption stage of Akagi Volcano, NE Japan.

2016 ◽  
Vol 122 (3) ◽  
pp. 109-126 ◽  
Author(s):  
Takahiro Yamamoto
2019 ◽  
Vol 14 (1) ◽  
pp. 27-39 ◽  
Author(s):  
Fukashi Maeno ◽  
Setsuya Nakada ◽  
Mitsuhiro Yoshimoto ◽  
Taketo Shimano ◽  
Natsumi Hokanishi ◽  
...  

Kelud Volcano is among the most active volcanoes in Indonesia, with repeated explosive eruptions throughout its history. Here, we reconstructed the relationship between the repose period and the cumulative volume of erupted material over the past 100 years and estimated the long-term magma discharge rate and future eruptive potential and hazards. Tephra data and eruption sequences described in historical documents were used to estimate the volume and mass discharge rate. The volumes of the 1901, 1919, 1951, 1966, 1990, and 2014 eruptions were estimated as 51–296 × 106m3. The mass discharge rates were estimated to be on the order of 107kg/s for the 1919, 1951, and 2014 eruptions and the order of 106kg/s for the 1966 and 1990 eruptions. Based on a linear relationship between the repose period and cumulative erupted mass, the long-term mass discharge rate was estimated as ∼ 1.5 × 1010kg/year, explaining the features of the larger eruptions (1919, 1951, and 2014) but not those of the smaller eruptions (1966 and 1990). This estimate is relatively high compared to other typical basaltic-andesitic subduction-zone volcanoes. This result provides important insights into the evolution of magmatic systems and prediction of future eruptions at Kelud Volcano.


1988 ◽  
Vol 23 (4) ◽  
pp. 568-577
Author(s):  
Harold S. Bailey

Abstract The water quality of the upper 110 kilometres of the St. Croix River is considered to be pristine. A major industrial discharge renders the lower 14 kilometres of the river a water quality limited segment. Prior to 1970 the Georgia-Pacific Pulp and Paper Mill at Woodland, Maine, discharged untreated effluent directly into the river causing dissolved oxygen concentrations to drop well below 5 mg/L, the objective chosen in the interest of restoring endemic fish populations. Since 1972, the Mill has installed primary and secondary treatment, regulated river discharge rate and effluent composition which has greatly improved the summer dissolved oxygen regime. By 1980, dissolved oxygen concentrations were generally above 5.0 mg/L and restocking the river with Atlantic Salmon (Salmo salar) was initiated.


2016 ◽  
Author(s):  
Alexander A. Conti ◽  
◽  
Elizabeth H. Gierlowski-Kordesch

The Mesozoic Hartford Basin, a fault-bounded half-graben in New England, is composed of four sedimentologic units displaying lacustrine, playa, and alluvial conditions separated by three tholeiitic basalt flows. Limited outcrop, however, has restricted analyses across the basin. The Jurassic East Berlin Formation, in particular, crops out only in the southern and northern extents of the basin, exposing the upper 100-118-m of deposits. As a result, a new core analysis across a 600-m-transect of East Berlin rocks has been completed in the central region of the basin, exposing the entire 195-m thickness of the formation for the first time. Cores expose eight 3-m-thick lacustrine mudrock units, the upper six of which are correlative to lake deposits identified in the southern and northern extents of the basin. Additionally, thin chicken-wire evaporites demarcate the lowermost, previously unexposed, lacustrine unit, 7-m beneath a 15-cm-thick tufa horizon. Thin playa deposits and thick sheetflood and Vertisol packages separate these lake sequences over 5-30-m of vertical distance.To supplement these sedimentologic data, and better understand lake geochemistry of the basin during East Berlin time, new biomarker analyses have been applied to each of the eight lacustrine mudrock units for the first time. Biomarker data are useful for determining the lake-basin type, a paleolake classification system derived by Bohacs, Carroll, and others to describe predictable physical and geochemical evolution within rift basins from fluvial facies to over-filled, balance-filled, and under-filled lacustrine facies; subsequently, balance-filled lacustrine facies grade to a terminal fluvial facies during changes in accommodation space through time. While fluvial facies envelope lake deposits within the Hartford Basin, identifying the lake types within the East Berlin has been problematic because of limited exposures. These new sedimentologic and biomarker analyses, however, suggest balance-filled lacustrine conditions at the base of the East Berlin that grade into under-filled conditions upsection. These new biomarker data finally provide definitive evidence for changing lake types during East Berlin time.


Sign in / Sign up

Export Citation Format

Share Document