scholarly journals Thermodynamics of irreversible plant cell growth

2011 ◽  
Vol 75 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Mariusz Pietruszka ◽  
Sylwia Lewicka ◽  
Krystyna Pazurkiewicz-Kocot

The time-irreversible cell enlargement of plant cells at a constant temperature results from two independent physical processes, e.g. water absorption and cell wall yielding. In such a model cell growth starts with reduction in wall stress because of irreversible extension of the wall. The water absorption and physical expansion are spontaneous consequences of this initial modification of the cell wall (the juvenile cell vacuolate, takes up water and expands). In this model the irreversible aspect of growth arises from the extension of the cell wall. Such theory expressed quantitatively by time-dependent growth equation was elaborated by Lockhart in the 60's.The growth equation omit however a very important factor, namely the environmental temperature at which the plant cells grow. In this paper we put forward a simple phenomenological model which introduces into the growth equation the notion of temperature. Moreover, we introduce into the modified growth equation the possible influence of external growth stimulator or inhibitor (phytohormones or abiotic factors). In the presence of such external perturbations two possible theoretical solutions have been found: the linear reaction to the application of growth hormones/abiotic factors and the non-linear one. Both solutions reflect and predict two different experimental conditions, respectively (growth at constant or increasing concentration of stimulator/inhibitor). The non-linear solution reflects a common situation interesting from an environmental pollution point of view e.g. the influence of increasing (with time) concentration of toxins on plant growth. Having obtained temperature modified growth equations we can draw further qualitative and, especially, quantitative conclusions about the mechanical properties of the cell wall itself. This also concerns a new and interesting result obtained in our model: We have calculated the magnitude of the cell wall yielding coefficient (T) [m<sup>3</sup> J<sup>-1</sup>•s<sup>-1</sup>] in function of temperature which has acquired reasonable numerical value throughout.

2019 ◽  
Vol 70 (14) ◽  
pp. 3615-3648 ◽  
Author(s):  
Amir J Bidhendi ◽  
Anja Geitmann

Abstract The primary plant cell wall is a dynamically regulated composite material of multiple biopolymers that forms a scaffold enclosing the plant cells. The mechanochemical make-up of this polymer network regulates growth, morphogenesis, and stability at the cell and tissue scales. To understand the dynamics of cell wall mechanics, and how it correlates with cellular activities, several experimental frameworks have been deployed in recent years to quantify the mechanical properties of plant cells and tissues. Here we critically review the application of biomechanical tool sets pertinent to plant cell mechanics and outline some of their findings, relevance, and limitations. We also discuss methods that are less explored but hold great potential for the field, including multiscale in silico mechanical modeling that will enable a unified understanding of the mechanical behavior across the scales. Our overview reveals significant differences between the results of different mechanical testing techniques on plant material. Specifically, indentation techniques seem to consistently report lower values compared with tensile tests. Such differences may in part be due to inherent differences among the technical approaches and consequently the wall properties that they measure, and partly due to differences between experimental conditions.


1999 ◽  
Vol 147 (1) ◽  
pp. 163-174 ◽  
Author(s):  
Pierre-Alain Delley ◽  
Michael N. Hall

Cells sense and physiologically respond to environmental stress via signaling pathways. Saccharomyces cerevisiae cells respond to cell wall stress by transiently depolarizing the actin cytoskeleton. We report that cell wall stress also induces a transient depolarized distribution of the cell wall biosynthetic enzyme glucan synthase FKS1 and its regulatory subunit RHO1, possibly as a mechanism to repair general cell wall damage. The redistribution of FKS1 is dependent on the actin cytoskeleton. Depolarization of the actin cytoskeleton and FKS1 is mediated by the plasma membrane protein WSC1, the RHO1 GTPase switch, PKC1, and a yet-to-be defined PKC1 effector branch. WSC1 behaves like a signal transducer or a stress-specific actin landmark that both controls and responds to the actin cytoskeleton, similar to the bidirectional signaling between integrin receptors and the actin cytoskeleton in mammalian cells. The PKC1-activated mitogen-activated protein kinase cascade is not required for depolarization, but rather for repolarization of the actin cytoskeleton and FKS1. Thus, activated RHO1 can mediate both polarized and depolarized cell growth via the same effector, PKC1, suggesting that RHO1 may function as a rheostat rather than as a simple on-off switch.


1993 ◽  
Vol 3 (5) ◽  
pp. 637-646 ◽  
Author(s):  
Jian-Kang Zhu ◽  
Jun Shi ◽  
Utpal Singh ◽  
Sarah E. Wyatt ◽  
Ray A. Bressan ◽  
...  

BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (17) ◽  
Author(s):  
Elena Pérez-Nadales ◽  
Antonio Di Pietro

2009 ◽  
Vol 57 (6) ◽  
pp. 1015-1026 ◽  
Author(s):  
Thorsten Hamann ◽  
Mark Bennett ◽  
John Mansfield ◽  
Christopher Somerville

2005 ◽  
Vol 58 (1) ◽  
pp. 305-319 ◽  
Author(s):  
Robbert A. Damveld ◽  
Mark Arentshorst ◽  
Angelique Franken ◽  
Patricia A. VanKuyk ◽  
Frans M. Klis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document