scholarly journals The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress

2005 ◽  
Vol 58 (1) ◽  
pp. 305-319 ◽  
Author(s):  
Robbert A. Damveld ◽  
Mark Arentshorst ◽  
Angelique Franken ◽  
Patricia A. VanKuyk ◽  
Frans M. Klis ◽  
...  
2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Markus RM Fiedler ◽  
Annett Lorenz ◽  
Benjamin M Nitsche ◽  
Cees AMJJ van den Hondel ◽  
Arthur FJ Ram ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Yuan Chen ◽  
Francois Le Mauff ◽  
Yan Wang ◽  
Ruiyang Lu ◽  
Donald C. Sheppard ◽  
...  

ABSTRACT Polysaccharides are key components of both the fungal cell wall and biofilm matrix. Despite having distinct assembly and regulation pathways, matrix exopolysaccharide and cell wall polysaccharides share common substrates and intermediates in their biosynthetic pathways. It is not clear, however, if the biosynthetic pathways governing the production of these polysaccharides are cooperatively regulated. Here, we demonstrate that cell wall stress promotes production of the exopolysaccharide galactosaminogalactan (GAG)-depend biofilm formation in the major fungal pathogen of humans Aspergillus fumigatus and that the transcription factor SomA plays a crucial role in mediating this process. A core set of SomA target genes were identified by transcriptome sequencing and chromatin immunoprecipitation coupled to sequencing (ChIP-Seq). We identified a novel SomA-binding site in the promoter regions of GAG biosynthetic genes agd3 and ega3, as well as its regulators medA and stuA. Strikingly, this SomA-binding site was also found in the upstream regions of genes encoding the cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Thus, SomA plays a direct regulation of both GAG and cell wall polysaccharide biosynthesis. Consistent with these findings, SomA is required for the maintenance of normal cell wall architecture and compositions in addition to its function in biofilm development. Moreover, SomA was found to globally regulate glucose uptake and utilization, as well as amino sugar and nucleotide sugar metabolism, which provides precursors for polysaccharide synthesis. Collectively, our work provides insight into fungal adaptive mechanisms in response to cell wall stress where biofilm formation and cell wall homeostasis were synchronously regulated. IMPORTANCE The cell wall is essential for fungal viability and is absent from human hosts; thus, drugs disrupting cell wall biosynthesis have gained more attention. Caspofungin is a member of a new class of clinically approved echinocandin drugs to treat invasive aspergillosis by blocking β-1,3-glucan synthase, thus damaging the fungal cell wall. Here, we demonstrate that caspofungin and other cell wall stressors can induce galactosaminogalactan (GAG)-dependent biofilm formation in the human pathogen Aspergillus fumigatus. We further identified SomA as a master transcription factor playing a dual role in both biofilm formation and cell wall homeostasis. SomA plays this dual role by direct binding to a conserved motif upstream of GAG biosynthetic genes and genes involved in cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Collectively, these findings reveal a transcriptional control pathway that integrates biofilm formation and cell wall homeostasis and suggest SomA as an attractive target for antifungal drug development.


2005 ◽  
Vol 42 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Robbert A. Damveld ◽  
Patricia A. vanKuyk ◽  
Mark Arentshorst ◽  
Frans M. Klis ◽  
Cees A.M.J.J. van den Hondel ◽  
...  

2005 ◽  
Vol 4 (4) ◽  
pp. 703-715 ◽  
Author(s):  
Anna Zakrzewska ◽  
Andre Boorsma ◽  
Stanley Brul ◽  
Klaas J. Hellingwerf ◽  
Frans M. Klis

ABSTRACT Chitosan is a plasma membrane-perturbing compound consisting of linear chains of β-1,4-linked glucosamine residues, which at acidic pHs become positively charged. It is extensively used as an antimicrobial compound, yet its mode of action is still unresolved. Chitosan strongly affected the growth of the yeast Saccharomyces cerevisiae, the food spoilage yeast Zygosaccharomyces bailii, and two human-pathogenic yeasts, Candida albicans and Candida glabrata. Microarray analysis of yeast cells treated with sublethal concentrations of chitosan revealed induction of the environmental stress response and three more major transcriptional responses. The first was a rapid and stable Cin5p-mediated response. Cin5p/Yap4p is a transcription factor involved in various stress responses. Deletion of CIN5 led to increased chitosan sensitivity. The second was a Crz1p-mediated response, which is delayed compared to the Cin5p response. Crz1p is a transcription factor of the calcineurin pathway. Cells deleted for CRZ1 or treated with the calcineurin inhibitor FK506 became hypersensitive to chitosan, supporting the notion that the Crz1p-controlled response offers protection against chitosan. The third was a strong Rlm1p-mediated response which ran parallel in time with the Crz1p-regulated response. Rlm1p is a transcription factor of the cell wall integrity pathway, which is activated by cell wall stress. Importantly, chitosan-treated cells became more resistant to β-1,3-glucanase, which is a well-known response to cell wall stress. We propose that the transcriptional response to chitosan may be representative of other plasma membrane-perturbing compounds.


Author(s):  
Kang Xiong ◽  
Chang Su ◽  
Qiangqiang Sun ◽  
Yang Lu

Echinocandins are recommended as the first-line drugs for the treatment of systemic candidiasis. Cas5 is a key transcription factor involved in the response to cell wall damage induced by echinocandins. Here, through a genetic screen, we report the identification of a second transcription factor Efg1 that is also crucial for proper transcriptional responses to echinocandins. Like CAS5, deletion of EFG1 confers hypersensitivity to caspofungin. Efg1 is required for the induction of CAS5 in response to caspofungin. However, ectopically expressed CAS5 cannot rescue the growth defect of efg1 mutant in caspofungin-containing medium. Deleting EFG1 in the cas5 mutant exacerbates the cell wall stress upon caspofungin addition and renders caspofungin-resistant Candida albicans responsive to treatment. Genome-wide transcription profiling of efg1/efg1 and cas5/cas5 using a RNA-Seq indicates that Efg1 and Cas5 co-regulate numbers of caspofungin-responsive genes expression, but they also independently control some genes induction. We further show that Efg1 interacts with Cas5 by yeast two-hybrid and in vivo immunoprecipitation in the presence or absence of caspofungin. Importantly, Efg1 and Cas5 bind to some caspofungin-responsive genes promoter to coordinately activate their expression. Thus, we demonstrate that Efg1, together with Cas5, controls the transcriptional response to cell wall stress induced by caspofungin.


BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (17) ◽  
Author(s):  
Elena Pérez-Nadales ◽  
Antonio Di Pietro

2009 ◽  
Vol 57 (6) ◽  
pp. 1015-1026 ◽  
Author(s):  
Thorsten Hamann ◽  
Mark Bennett ◽  
John Mansfield ◽  
Christopher Somerville

2013 ◽  
Vol 126 (12) ◽  
pp. 2668-2677 ◽  
Author(s):  
L. A. Walker ◽  
M. D. Lenardon ◽  
K. Preechasuth ◽  
C. A. Munro ◽  
N. A. R. Gow

Sign in / Sign up

Export Citation Format

Share Document