ANALYSIS OF SELECTED PHYSICAL AND CHEMICAL PROPERTIES OF FLY ASH FROM ITPOK FOR THE PURPOSE OF RAW MATERIAL RECOVERY

Author(s):  
Malgorzata Kajda-Szczesniak
1987 ◽  
Vol 113 ◽  
Author(s):  
Scott Schlorholtz ◽  
Ken Bergeson ◽  
Turgut Demirel

ABSTRACTThe physical and chemical properties of fly ash produced at Ottumwa Generating Station have been monitored since April, 1985. The fly ash is produced from burning a low sulfur, sub-bituminous coal obtained from the Powder River Basin near Gillette, Wyoming. One-hundred and sixty samples of fly ash were obtained during the two year period. All of the samples were subjected to physical testing as specified by ASTM C 311. About one-hundred of the samples were also subjected to a series of tests designed to monitor the self-cementing properties of the fly ash. Many of the fly ash samples were subjected to x-ray diffraction and fluorescence analysis to define the mineralogical and chemical composition of the bulk fly ash as a function of sampling date. Hydration products in selected hardened fly ash pastes, were studied by x-ray diffraction and scanning electron microscopy. The studies indicated that power plant operating conditions influenced the compressive strength of the fly ash paste specimens. Mineralogical and morphological studies of the fly ash pastes indicated that stratlingite formation occurred in the highstrength specimens, while ettringite was the major hydration product evident in the low-strength specimens.


Author(s):  
Juliany Barbosa de Pinho ◽  
Aloisio Bianchini ◽  
Pedro Silvério Xavier Pereira ◽  
Letycia Cunha Nunes ◽  
Rodrigo Fernandes Daros ◽  
...  

From the pyrolysis process, biochar is a carbon rich and recalcitrant organic material with potential for long term carbon sequestration because of its aromatic structure. However, the physical and chemical properties of the biochar vary due to the diversity of raw material and the conditions of production. The present study aimed to evaluate the biochar from the sugarcane bagasse at different temperatures and under two conditions of pyrolysis. The biochar was produced at two final temperatures 200°C (1 hour); 250°C (1h) and 250°C (2h), with pyrolysis of an oxidizing and non-oxidizing atmosphere for both. PH, cation exchange capacity (CTC), carbon content (C), Nitrogen (N), hydrogen (H), H:C, C:N and ash ratios were evaluated. The contents of C, H, N and the atomic ratios H:C and C:N were higher in Biochar produced in a non-oxidizing atmosphere (BNO). However, the content of ash, pH and CTC were higher in Biochar produced in oxidizing atmospheres (BO). One can conclude the direct influence of the pyrolysis condition.


2014 ◽  
Vol 899 ◽  
pp. 409-414 ◽  
Author(s):  
Alena Struhárová ◽  
Stanislav Unčík ◽  
Svetozár Balkovic ◽  
Mária Hlavinková

Fluidized fly ash has different physical and chemical properties compared to fly ash emerging from classic combustion. It contains amorphous phases resulting from a dehydration of clay minerals as well as unreacted sorbent of CaCO3, free CaO and anhydrite (CaSO4). Work targets the possibilities of production of an autoclaved aerated concrete (AAC) from fluidized fly ash, and its influence on particular physical-mechanical properties of autoclaved aerated concrete.


In article the possibility of receiving the metallized concentrates from ferriferous ores with the low content of iron, for the purpose of preparation them to metallurgical processing is considered. It is shown that the following factors have significant effect on effectiveness of process of receiving the metallized concentrates: composition of ore, physical and chemical properties of ore, possibility of receiving pellets, type and consumption of reducer, etc.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4212 ◽  
Author(s):  
Sergey Reshetnikov ◽  
Irina Kurzina ◽  
Alesia Livanova ◽  
Eugene Meshcheryakov ◽  
Lyubov Isupova

The effect of alkali metal (Li, Na, K) incorporation on the morphology and water vapor uptake properties of mesoporous Al2O3 has been studied. The modification of the raw material, pseudoboehmite, represented a mixture of low-temperature phases (γ + η + χ)-Al2O3, and has been done at low-temperature that does not change the phase ratio. A decrease in specific surface values and an average pores size increase were observed as a result of the introduction of metal cations by impregnation and subsequent thermal treatment. The influence of the content of the modifying metal on the adsorption ability of the obtained samples in relation to water vapours has been studied. It has been established that alkaline modification Al2O3 with the lithium cations did not result in adsorption ability improvement, whereas samples that were modified with sodium or potassium in the amount of 1.2 weight % and 2.6 weight %, respectively, possess a higher equilibrium capacity (by ~40%), as compared to that of the initial sample (Al2O3), and a sufficiently high adsorption rate.


Sign in / Sign up

Export Citation Format

Share Document