scholarly journals PADDLE SHAPE OPTIMIZATION FOR HOLE-FLANGING BY PADDLE FORMING THROUGH THE USE OF A PREDEFINED STRAIN PATH IN FINITE ELEMENT ANALYSIS

2019 ◽  
Vol 19 (2) ◽  
pp. 83-98 ◽  
Author(s):  
Lemopi Isidore BESONG ◽  
Johannes BUHL ◽  
Markus BAMBACH

This research investigates a novel hole-flanging process by paddle forming through the use of finite element (FE) simulations. Paddles of different shapes rotating at high speeds were used to deform clamped sheets with pre-drilled holes at their centers. The results of the simulations show that the paddle shape determines the geometry and principal strains of the formed flanges. A convex-shaped paddle forms flanges with predominant strains in the left quadrant of the forming limit diagram (FLD). However, the convex paddle promotes unwanted bulge formation at the clamped end of the flange. A concave paddle forms flanges with no bulge but the principal strains of elements in the middle section of the flange are in the right quadrant of the FLD which indicates an increased probability for crack occurrence. An optimization of the paddle shape was conducted to prevent bulging at the clamped end while avoiding crack occurrence. The paddle shape was optimized by mapping the deformation of some elements along the flange length to a pre-defined strain path on the FLD while maintaining the bulge height within the desired geometric tolerance. The radii and lengths of the paddle edge were varied to obtain an optimum paddle shape.

2006 ◽  
Vol 510-511 ◽  
pp. 330-333
Author(s):  
M.C. Curiel ◽  
Ho Sung Aum ◽  
Joaquín Lira-Olivares

Numerical simulations based on Finite Element Analysis (FEA) are widely used to predict and evaluate the forming parameters before performing the physical processes. In the sheet metal industry, there are basically two types of FE programs: the inverse (one-step) programs and the incremental programs. In the present paper, the forming process of the shield case piece (LTA260W1-L05) was optimized by performing simulations with both types of software. The main analyzed parameter was the blankholding force while the rest of the parameters were kept constant. The criteria used to determine the optimum value was based on the Forming Limit Diagram (FLD), fracture and wrinkling of the material, thickness distribution, and the principal strains obtained. It was found that the holding force during the forming process deeply affects the results, and a range of values was established in which the process is assumed to give a good quality piece.


2013 ◽  
Vol 652-654 ◽  
pp. 1966-1970
Author(s):  
Zhi Ren Han ◽  
Ze Bing Yuan

This paper is focus on two-Pass Deep Drawing Forming of conical axisymmetric parts, study on the finite element simulation and test of multi-Pass deep drawing part. It carry on the finite element analysis and calculation using the ANSYS/LS-DYNA software platform, analyzing the simulation results such as stress , strain distribution and formability by post-processing LSPOST software. It was done multi-Pass deep drawing test using a set of combined type mould. Based on the multi-Pass forming test by using a set of combined type mould, comparison of simulation and test data can be obtained through the forming limit diagram. The result of simulation and test is basically the same and both reflect the formability.


Author(s):  
A. S. Wifi ◽  
R. K. Abdel-Mageid ◽  
A. H. Gomaa ◽  
M. Shazly

In this paper a computer-aided rule-based process design of multi-staged deep drawing of box shaped shells is developed. A decomposition method is adopted in the algorithm for geometry description of the part under consideration. The shell geometry, tooling dimensions and load required are determined for each stage. A finite element analysis is carried out to verify and adjust the output of this process design algorithm. The deformation severity and the resulting strains and thickness variations are investigated. The forming limit diagram (FLD) is adopted as a basic reference to monitor possible part failure in the process.


2021 ◽  
Author(s):  
Angela Cusanno ◽  
Shanmukha Moturu ◽  
David Carty ◽  
Gianfranco Palumbo

The hydraulic bulge test represents an effective experimental method to characterise sheet metals since the equivalent strains before failure are much larger than those measured during tensile testing and there is nearly no frictional effect on the results. Recently this test has been proposed not only for extracting data concerning the equi-biaxial strain condition, but to determine the forming limit diagram (FLD) in the range of positive minor strains. In the proposed methodology, different strain paths can be obtained by merely using a test blank having two holes with a suitable geometry and position to be tested, without the need of dies with elliptical apertures. However, a carrier sheet is necessary, thus implying results may be affected by friction effects. This paper proposes a new methodology for the determination of the right side of the Forming Limit Curve (FLC), based on the adoption of local heat treatments aimed at determining different strain paths on the blank to be tested while using the classical circular die for bulge tests. In particular, the formability of the alloy AA5754-H32 was investigated; 3D Finite Element simulations were conducted setting different laser strategies and monitoring the resulting strain path. Results revealed that the proposed methodology supports obtaining many additional points in the right side of the FLC, thus being effective and friction free.


2020 ◽  
Vol 3 (2) ◽  
pp. 65-69
Author(s):  
Viktor Gál

AbstractNowadays, finite element (FE) methods are widely used for the analysis of Body in White parts production. An FE software applies the forming-limit diagram to predict the failure of the sheet metal. There are many new materials for weight reduction; for these new materials, the determination of forming-limit curves (FLC) is important to studying formability issues. There are some cases where the available material for the measurements is not enough or due to some specific measurement parameter, the standard test specimen cannot be used. In these cases, the geometry of the test pieces and the testing equipment should be reduced. In this paper, the material card for DC05 (1.0312) steel was determined based on a tensile test and the Nakajima test. With the material card, simulations were performed to investigate the size effect of the hemispherical punch used for Nakajima forming method. Based on the simulations, the difference between the FLC-s (determined with different equipment) was found to be negligible.


2012 ◽  
Vol 204-208 ◽  
pp. 2167-2171
Author(s):  
Yu Lan Wang ◽  
Guo Dong Zheng

Finite element analysis and calculation are held on the superstructure of the auxiliary channel bridge at the right branching of Beijiang Bridge for a short condition and the service phase. The theoretical launching force is calculated and amended in construction. The results show that when considering load effects such as the dead loads of box girders, the live loads of decks and the pre-stressed secondary forces, the eccentric stress state will appear on the webs, and the steel stress produced by shrinkage and creep of concrete can not be ignored. So the launching force must be amended during the construction process. These conclusions have a certain reference value on the bridge design and construction.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Mashallah Khanehmasjedi ◽  
Sepideh Bagheri ◽  
Vahid Rakhshan ◽  
Mojtaba Hasani

Introduction. Miniscrews have proved quite effective in fixed orthodontic treatment. They can be placed in areas like palatal interradicular zones or midpalatal suture. Despite the value of these methods and their ever-increasing use, their characteristics are not assessed before when implanted in palatal interradicular areas or in the midpalatal suture. We aimed to assess, for the first time, the dynamics of full arch distalization using such miniscrews. Methods. A 3D model of maxilla with all permanent dentition was created from a CT scan volume. Tissues were segmented and differentiated. Afterward, miniscrews and appliances were designed, and the whole model was registered within a finite element analysis software by assigning proper mechanical properties to tissues and orthodontic appliances. The full arches were distalized using transpalatal arches with miniscrews as anchorage devices (in two different models). The extents of stresses and patterns of movements of various elements (teeth, miniscrews, appliances, tissues) were estimated. Results and Conclusions. Comparing the two models, it is obvious that in both models, the stress distribution is the highest in the TPA arms and the head of the miniscrew where the spring is connected. In comparison with the displacement in the X-axis, the “mesial in” rotation is seen in the first molar of both models. But there is one exception and that is the “mesial out” rotation of the right second molar. In all measurements, the amount of movement in Model 2 (with palatal interradicular miniscrews) is more than that in Model 1 (with midpalatal miniscrew). In the Y-axis, more tipping is seen in Model 2, especially the anterior teeth (detorque) and the first molar, but in Model 1, bodily movement of the first molar is more evident. Along the Z-axis, the mesial intrusion of the first molar and the distal extrusion of this tooth can be seen in both models. Again, the displacement values are higher in the second model (with interradicular miniscrews). In comparison with micromotion and stress distribution of miniscrews, in Model 1, maximum stress and micromotion is observed at the head of the miniscrew where it is attached to the spring. Of course, this amount of micromotion increases over time. The same is true for Model 2, but with a lower micromotion. As for the amount of stress, the stress distribution in both miniscrews of both models is almost uniform and rather severe.


2014 ◽  
Vol 663 ◽  
pp. 668-674
Author(s):  
Azman Senin ◽  
Zulkifli Mohd Nopiah ◽  
Muhammad Jamhuri Jamaludin ◽  
Ahmad Zakaria

The Finite-Element Analysis (FEA) is a prediction methodology that facilitates product designers produced the part design with manufacturing focused. With the similar advantages, manufacturing engineers are capable of build the first actual car model from the new production Draw Die. This approach has eliminated the requirement to manufacture the prototype model from soft tool parts and soft tool press die. However, the prediction accuracy of FEA is a major topic of research work in automotive sector's practitioners and academia as current accuracy level is anticipated at 60%. The objective of works is to assess the prediction accuracy on deformation results from mass production stamped parts. The Finite-element model is developed from the CAD data of the production tools. Subsequently, finite-element model for production tools is discretized with shell elements to avoid computation errors in the simulation process. The sheet blank material with 1.5 mm and 2.0 mm thickness is discredited by shell (2D modeling) and solid elements (3D modeling) respectively. The input parameters for the simulation model for both elements are attained from the actual setup at Press Machine and Production Tool. The analysis of deformation and plastic strain are performed for various setup parameters. Finally, the deformation characteristic such as Forming Limit Diagram (FLD) and thinning are compared for all simulated models.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhun Xu ◽  
Yikai Li ◽  
Shaoqun Zhang ◽  
Liqing Liao ◽  
Kai Wu ◽  
...  

Abstract Background Clinical studies have found that manipulations have a good clinical effect on sacroiliac joint (SIJ) pain without specific causes. However, the specific mechanisms underlying the effect of manipulations are still unclear. The purpose of this study was to investigate the effects of three common manipulations on the stresses and displacements of the normal SIJ and the strains of the surrounding ligaments. Methods A three-dimensional finite element model of the pelvis-femur was developed. The manipulations of hip and knee flexion (MHKF), oblique pulling (MOP), and lower limb hyperextension (MLLH) were simulated. The stresses and displacements of the SIJ and the strains of the surrounding ligaments were analyzed during the three manipulations. Results MOP produced the highest stress on the left SIJ, at 6.6 MPa, while MHKF produced the lowest stress on the right SIJ, at 1.5 MPa. The displacements of the SIJ were all less than 1 mm during the three manipulations. The three manipulations caused different degrees of ligament strain around the SIJ, and MOP produced the greatest straining of the ligaments. Conclusion The three manipulations all produced small displacements of the SIJ and different degrees of ligament strains, which might be the mechanism through which they relieve SIJ pain. MOP produced the largest displacement and the greatest ligament strains.


Sign in / Sign up

Export Citation Format

Share Document