scholarly journals Mitochondrial Homeostasis Molecules: Regulation by a Trio of Recessive Parkinson’s Disease Genes

2014 ◽  
Vol 23 (4) ◽  
pp. 345-351 ◽  
Author(s):  
Ji-Young Han ◽  
Ji-Soo Kim ◽  
Jin H. Son
Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 371
Author(s):  
Filipa Barroso Gonçalves ◽  
Vanessa Alexandra Morais

Mitochondria are known as highly dynamic organelles essential for energy production. Intriguingly, in the recent years, mitochondria have revealed the ability to maintain cell homeostasis and ultimately regulate cell fate. This regulation is achieved by evoking mitochondrial quality control pathways that are capable of sensing the overall status of the cellular environment. In a first instance, actions to maintain a robust pool of mitochondria take place; however, if unsuccessful, measures that lead to overall cell death occur. One of the central key players of these mitochondrial quality control pathways is PINK1 (PTEN-induce putative kinase), a mitochondrial targeted kinase. PINK1 is known to interact with several substrates to regulate mitochondrial functions, and not only is responsible for triggering mitochondrial clearance via mitophagy, but also participates in maintenance of mitochondrial functions and homeostasis, under healthy conditions. Moreover, PINK1 has been associated with the familial form of Parkinson’s disease (PD). Growing evidence has strongly linked mitochondrial homeostasis to the central nervous system (CNS), a system that is replenished with high energy demanding long-lasting neuronal cells. Moreover, sporadic cases of PD have also revealed mitochondrial impairments. Thus, one could speculate that mitochondrial homeostasis is the common denominator in these two forms of the disease, and PINK1 may play a central role in maintaining mitochondrial homeostasis. In this review, we will discuss the role of PINK1 in the mitochondrial physiology and scrutinize its role in the cascade of PD pathology.


2020 ◽  
Author(s):  
Steven J Lubbe ◽  
Yvette C. Wong ◽  
Bernabe Bustos ◽  
Soojin Kim ◽  
Jana Vandrovcova ◽  
...  

ABSTRACTEarly-onset Parkinson’s disease (EOPD) can be caused by biallelic mutations in PRKN, DJ1 and PINK1. However, while the identification of novel genes is becoming increasingly challenging, new insights into EOPD genetics have important relevance for understanding the pathways driving disease pathogenesis. Here, using extended runs of homozygosity (ROH) >8Mb as a marker for possible autosomal recessive inheritance, we identified 90 EOPD patients with extended ROH. Investigating rare, damaging homozygous variants to identify candidate genes for EOPD, 81 genes were prioritised. Through the assessment of biallelic (homozygous and compound heterozygous) variant frequencies in cases and controls from three independent cohorts totalling 3,381 PD patients and 2,463 controls, we identified two biallelic MIEF1 variant carriers among EOPD patients. We further investigated the role of disease-associated variants in MIEF1 which encodes for MID51, an outer mitochondrial membrane protein, and found that putative EOPD-associated variants in MID51 preferentially disrupted its oligomerization state. These findings provide further support for the role of mitochondrial dysfunction in the development of PD. Together, we have used genome-wide homozygosity mapping to identify potential EOPD genes, and future studies incorporating expanded datasets and further functional analyses will help to determine their roles in disease aetiology.


Neuron ◽  
2015 ◽  
Vol 85 (3) ◽  
pp. 657 ◽  
Author(s):  
Nripesh Dhungel ◽  
Simona Eleuteri ◽  
Ling-bo Li ◽  
Nicholas J. Kramer ◽  
Justin W. Chartron ◽  
...  

2002 ◽  
Vol 06 (08) ◽  
pp. 283-288

Liver Malfunction in Elderly Can Cause Strokes. Research Shows Indoor Types More Likely to Contract Melanoma. Study Shows Chinese Genetically Prone to Contract AIDS. Japan Scientists First to Make New Benzene-Silica Material. Love of Outdoors Link to Giardiasis. NZ Men More Likely to Suffer Hearing Loss than Women. Scientists Welcome Latest Draft Sequences of Rice Genome. Doctors Search for Parkinson's Disease Genes. Researchers Develop New Bone Substitute. Taiwan Hospital Achieves Breakthrough in Infertility Treatment.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Ruixin Yang ◽  
Guodong Gao ◽  
Zixu Mao ◽  
Qian Yang

Parkinson’s disease (PD), a complex neurodegenerative disorder, is pathologically characterized by the formation of Lewy bodies and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial dysfunction is considered to be one of the most important causative mechanisms. In addition, dysfunction of chaperone-mediated autophagy (CMA), one of the lysosomal proteolytic pathways, has been shown to play an important role in the pathogenesis of PD. An exciting and important development is recent finding that CMA and mitochondrial quality control may be linked. This review summarizes the studies revealing the link between autophagy and mitochondrial function. Discussions are focused on the connections between CMA and mitochondrial failure and on the role of MEF2D, a neuronal survival factor, in mediating the regulation of mitochondria in the context of CMA. These new findings highlight the need to further explore the possibility of targeting the MEF2D-mitochondria-CMA network in both understanding the PD pathogenesis and developing novel therapeutic strategies.


2021 ◽  
Vol 13 ◽  
Author(s):  
Anna Wilkaniec ◽  
Anna M. Lenkiewicz ◽  
Lidia Babiec ◽  
Emilia Murawska ◽  
Henryk M. Jęśko ◽  
...  

Aberrant secretion and accumulation of α-synuclein (α-Syn) as well as the loss of parkin function are associated with the pathogenesis of Parkinson’s disease (PD). Our previous study suggested a functional interaction between those two proteins, showing that the extracellular α-Syn evoked post-translational modifications of parkin, leading to its autoubiquitination and degradation. While parkin plays an important role in mitochondrial biogenesis and turnover, including mitochondrial fission/fusion as well as mitophagy, the involvement of parkin deregulation in α-Syn-induced mitochondrial damage is largely unknown. In the present study, we demonstrated that treatment with exogenous α-Syn triggers mitochondrial dysfunction, reflected by the depolarization of the mitochondrial membrane, elevated synthesis of the mitochondrial superoxide anion, and a decrease in cellular ATP level. At the same time, we observed a protective effect of parkin overexpression on α-Syn-induced mitochondrial dysfunction. α-Syn-dependent disturbances of mitophagy were also shown to be directly related to reduced parkin levels in mitochondria and decreased ubiquitination of mitochondrial proteins. Also, α-Syn impaired mitochondrial biosynthesis due to the parkin-dependent reduction of PGC-1α protein levels. Finally, loss of parkin function as a result of α-Syn treatment induced an overall breakdown of mitochondrial homeostasis that led to the accumulation of abnormal mitochondria. These findings may thus provide the first compelling evidence for the direct association of α-Syn-mediated parkin depletion to impaired mitochondrial function in PD. We suggest that improvement of parkin function may serve as a novel therapeutic strategy to prevent mitochondrial impairment and neurodegeneration in PD (thereby slowing the progression of the disease).


Sign in / Sign up

Export Citation Format

Share Document