scholarly journals Exogenous Alpha-Synuclein Evoked Parkin Downregulation Promotes Mitochondrial Dysfunction in Neuronal Cells. Implications for Parkinson’s Disease Pathology

2021 ◽  
Vol 13 ◽  
Author(s):  
Anna Wilkaniec ◽  
Anna M. Lenkiewicz ◽  
Lidia Babiec ◽  
Emilia Murawska ◽  
Henryk M. Jęśko ◽  
...  

Aberrant secretion and accumulation of α-synuclein (α-Syn) as well as the loss of parkin function are associated with the pathogenesis of Parkinson’s disease (PD). Our previous study suggested a functional interaction between those two proteins, showing that the extracellular α-Syn evoked post-translational modifications of parkin, leading to its autoubiquitination and degradation. While parkin plays an important role in mitochondrial biogenesis and turnover, including mitochondrial fission/fusion as well as mitophagy, the involvement of parkin deregulation in α-Syn-induced mitochondrial damage is largely unknown. In the present study, we demonstrated that treatment with exogenous α-Syn triggers mitochondrial dysfunction, reflected by the depolarization of the mitochondrial membrane, elevated synthesis of the mitochondrial superoxide anion, and a decrease in cellular ATP level. At the same time, we observed a protective effect of parkin overexpression on α-Syn-induced mitochondrial dysfunction. α-Syn-dependent disturbances of mitophagy were also shown to be directly related to reduced parkin levels in mitochondria and decreased ubiquitination of mitochondrial proteins. Also, α-Syn impaired mitochondrial biosynthesis due to the parkin-dependent reduction of PGC-1α protein levels. Finally, loss of parkin function as a result of α-Syn treatment induced an overall breakdown of mitochondrial homeostasis that led to the accumulation of abnormal mitochondria. These findings may thus provide the first compelling evidence for the direct association of α-Syn-mediated parkin depletion to impaired mitochondrial function in PD. We suggest that improvement of parkin function may serve as a novel therapeutic strategy to prevent mitochondrial impairment and neurodegeneration in PD (thereby slowing the progression of the disease).

2017 ◽  
Vol 114 (40) ◽  
pp. 10773-10778 ◽  
Author(s):  
Seong Su Kang ◽  
Zhentao Zhang ◽  
Xia Liu ◽  
Fredric P. Manfredsson ◽  
Matthew J. Benskey ◽  
...  

BDNF/TrkB neurotrophic signaling is essential for dopaminergic neuronal survival, and the activities are reduced in the substantial nigra (SN) of Parkinson’s disease (PD). However, whether α-Syn (alpha-synuclein) aggregation, a hallmark in the remaining SN neurons in PD, accounts for the neurotrophic inhibition remains elusive. Here we show that α-Syn selectively interacts with TrkB receptors and inhibits BDNF/TrkB signaling, leading to dopaminergic neuronal death. α-Syn binds to the kinase domain on TrkB, which is negatively regulated by BDNF or Fyn tyrosine kinase. Interestingly, α-Syn represses TrkB lipid raft distribution, decreases its internalization, and reduces its axonal trafficking. Moreover, α-Syn also reduces TrkB protein levels via up-regulation of TrkB ubiquitination. Remarkably, dopamine’s metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL) stimulates the interaction between α-Syn and TrkB. Accordingly, MAO-B inhibitor rasagiline disrupts α-Syn/TrkB complex and rescues TrkB neurotrophic signaling, preventing α-Syn–induced dopaminergic neuronal death and restoring motor functions. Hence, our findings demonstrate a noble pathological role of α-Syn in antagonizing neurotrophic signaling, providing a molecular mechanism that accounts for its neurotoxicity in PD.


2018 ◽  
Author(s):  
Tim E. Moors ◽  
Christina A. Maat ◽  
Daniel Niedieker ◽  
Daniel Mona ◽  
Dennis Petersen ◽  
...  

AbstractPost-translational modifications of alpha-synuclein (aSyn), particularly phosphorylation at Serine 129 (Ser129-p) and truncation of its C-terminus (CTT), have been implicated in Parkinson’s disease (PD) pathology. To gain more insight in the relevance of Ser129-p and CTT aSyn under physiological and pathological conditions, we investigated their subcellular distribution patterns in normal aged and PD brains using highly-selective antibodies in combination with 3D multicolor STED microscopy. We show that CTT aSyn localizes in mitochondria in PD patients and controls, whereas the organization of Ser129-p in a cytoplasmic network is strongly associated with pathology. Nigral Lewy bodies show an onion skin-like architecture, with a structured framework of Ser129-p aSyn and neurofilaments encapsulating CTT aSyn in their core, which displayed high content of proteins and lipids by label-free CARS microscopy. The subcellular phenotypes of antibody-labeled pathology identified in this study provide evidence for a crucial role of Ser129-p aSyn in Lewy body formation.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
A. R. Esteves ◽  
D. M. Arduíno ◽  
D. F. F. Silva ◽  
C. R. Oliveira ◽  
S. M. Cardoso

While the etiology of Parkinson's disease remains largely elusive, there is accumulating evidence suggesting that mitochondrial dysfunction occurs prior to the onset of symptoms in Parkinson's disease. Mitochondria are remarkably primed to play a vital role in neuronal cell survival since they are key regulators of energy metabolism (as ATP producers), of intracellular calcium homeostasis, of NAD+/NADH ratio, and of endogenous reactive oxygen species production and programmed cell death. In this paper, we focus on mitochondrial dysfunction-mediated alpha-synuclein aggregation. We highlight some of the findings that provide proof of evidence for a mitochondrial metabolism control in Parkinson's disease, namely, mitochondrial regulation of microtubule-dependent cellular traffic and autophagic lysosomal pathway. The knowledge that microtubule alterations may lead to autophagic deficiency and may compromise the cellular degradation mechanisms that culminate in the progressive accumulation of aberrant protein aggregates shields new insights to the way we address Parkinson's disease. In line with this knowledge, an innovative window for new therapeutic strategies aimed to restore microtubule network may be unlocked.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1508
Author(s):  
Anna Picca ◽  
Flora Guerra ◽  
Riccardo Calvani ◽  
Roberta Romano ◽  
Hélio José Coelho-Júnior ◽  
...  

Parkinson’s Disease (PD) is a highly prevalent neurodegenerative disease among older adults. PD neuropathology is marked by the progressive loss of the dopaminergic neurons of the substantia nigra pars compacta and the widespread accumulation of misfolded intracellular α-synuclein (α-syn). Genetic mutations and post-translational modifications, such as α-syn phosphorylation, have been identified among the multiple factors supporting α-syn accrual during PD. A decline in the clearance capacity of the ubiquitin-proteasome and the autophagy-lysosomal systems, together with mitochondrial dysfunction, have been indicated as major pathophysiological mechanisms of PD neurodegeneration. The accrual of misfolded α-syn aggregates into soluble oligomers, and the generation of insoluble fibrils composing the core of intraneuronal Lewy bodies and Lewy neurites observed during PD neurodegeneration, are ignited by the overproduction of reactive oxygen species (ROS). The ROS activate the α-syn aggregation cascade and, together with the Lewy bodies, promote neurodegeneration. However, the molecular pathways underlying the dynamic evolution of PD remain undeciphered. These gaps in knowledge, together with the clinical heterogeneity of PD, have hampered the identification of the biomarkers that may be used to assist in diagnosis, treatment monitoring, and prognostication. Herein, we illustrate the main pathways involved in PD pathogenesis and discuss their possible exploitation for biomarker discovery.


Sign in / Sign up

Export Citation Format

Share Document