scholarly journals Basic Study on Development and Validation of Seismic Response Analysis Using High-Fidelity Model for Large-Scale Reinforced Concrete Structures

2019 ◽  
Vol 19 (5) ◽  
pp. 5_345-5_355
Author(s):  
Hiroki MOTOYAMA ◽  
Hideaki SONOBE ◽  
Wataru HOTTA ◽  
Shunichi SUZUKI ◽  
Muneo HORI
2008 ◽  
Vol 400-402 ◽  
pp. 301-309
Author(s):  
Yeong Ae Heo ◽  
Guo Wei Zhang ◽  
Sashi K. Kunnath ◽  
Yan Xiao

In nonlinear dynamic analyses of RC structures based on fiber-based discretization of member cross-sections, the constitutive model used to represent the cyclic behavior of reinforcing steel typically plays a significant role in controlling the structural response especially for nonductile systems. The accuracy of a fiber-section model is almost entirely dependent on the ability of both the concrete and reinforcing steel constitutive material models to represent the overall inelastic behavior of the member. This paper describes observations related to the fundamental properties of reinforcing steel such as buckling, hardening, diminishing yield plateau and growth of curvature, Bauschinger effect, and low-cycle fatigue and strength degradation that are relevant to the overall task of developing an accurate material model for use in seismic response analysis of reinforced concrete structures.


2011 ◽  
Vol 94-96 ◽  
pp. 1941-1945
Author(s):  
Yi Wu ◽  
Chun Yang ◽  
Jian Cai ◽  
Jian Ming Pan

Elasto-plastic analysis of seismic responses of valve hall structures were carried out by using finite element software, and the effect of seismic waves on the seismic responses of the valve hall structures and suspension equipments were studied. Results show that significant torsional responses of the structure can be found under longitudinal and 3D earthquake actions. Under 3D earthquake actions, the seismic responses of the suspension valves are much more significant than those under 1D earthquake actions, the maximum tensile force of the suspenders is about twice of that under 1D action. The seismic responses of the suspension valves under vertical earthquake actions are much stronger than those under horizontal earthquake actions, when suffering strong earthquake actions; the maximum vertical acceleration of the suspension valves is about 4 times of that under horizontal earthquake actions. It is recommended that the effects of 3D earthquake actions on the structure should be considered in seismic response analysis of the valve hall structure.


2013 ◽  
Vol 48 (1) ◽  
pp. 1-16 ◽  
Author(s):  
B.R. Jayalekshmi ◽  
V.G. Deepthi Poojary ◽  
Katta Venkataramana ◽  
R. Shivashankar

2016 ◽  
Vol 10 (05) ◽  
pp. 1640014 ◽  
Author(s):  
Tomoshi Miyamura ◽  
Seizo Tanaka ◽  
Muneo Hori

In the present study, a large-scale seismic response analysis of a super-high-rise steel frame considering the soil–structure interaction is conducted. A high-fidelity mesh of a 31-story super-high-rise steel frame and the ground underneath it, which is made completely of hexahedral elements, is generated. The boundary conditions that are consistent with the solution of the one-dimensional (1D) wave propagation analysis are imposed on the side and bottom surfaces of the ground. The waves are assumed to propagate in the vertical direction. The 1D wave propagation analysis is conducted under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake. The parallel large-scale analysis is performed using the K computer, which is one of the fastest supercomputers in the world. The results of the models with and without the ground are compared, which reveals that the results obtained by these two models are very similar because the ground is assumed be sufficiently hard in the present study.


Sign in / Sign up

Export Citation Format

Share Document