scholarly journals Base case simulation of a semi-batch emulsion copolymerization process: application to styrene/ butadiene system

2018 ◽  
Vol 4 (3) ◽  
pp. 304
Author(s):  
I Harsono ◽  
H Hindarso ◽  
N Indraswati

It has been long recognized that emulsion polymerization is a complex heterogeneous process involving transport of monomers, free radicals, and other species between aqueous phase and organic phase. Though there are a number of models available in the literature, most of them deal only with specific aspects in emulsion polymerization and are far from being general. To simulate this complicated process and to achieve an adequate level of understanding, a Polymers Plus software from Aspen Technology. Inc. was used. The objective of this work is to illustrate the principle of use of Polymers Plus, simulate, and analyze the free-radical seeded emulsion copolymerization of styrene­butadiene process model in a semi-batch reactor. The base case simulation can be used to gain process understanding by analyzing how process variables and operating conditions during the course of a semi-batch reactor affect the product quality.Keywords: Polymers Plus, Emulsion Copolymerization, Simulation, Semi Batch Reactor, Styrene/ butadiene AbstrakTelah diketahui sejak lama bahwa polimerisasi emulsi merupakan sebuah proses heterogen yang kompleks, yang meliputi perpindahan monomer, radikal bebas, dan senyawa lainnya dalam fasa air dan fasa organik. Walaupun dalam literatur terdapat berbagai model, sebagian besar hanya membahas tentang aspek-aspek khusus dalam polimerisasi emulsi yang belurn berlaku umum. Untuk melakukan simulasi serta meningkatkan pemahaman tentang proses yang kompleks ini, digunakan perangkat lunak Polymers Plus dari Aspen Technology, Inc. Penelitian ini bertujuan untuk memberikan ilustrasi tentang prinsip penggunaan Polymers Plus serta melakukan simulasi dan analisis tentang model untuk proses kopolimerisasi emulsi styrene-butadiene dengan free radical seeded dalam reaktor semi batch. Simulasi ini dapat digunakan untuk memperoleh pemahaman proses dengan menganalisis pengaruh variabel-variabel proses dan kondisi operasi dalam reaktor semi batch terhadap kualitas produk.Kata Kunci: Polymers Plus, Kopolimerisasi Emulsi, Simulasi, Reaktor Semi Batch, Stiren/ butadien

2006 ◽  
Vol 6 (2) ◽  
pp. 82
Author(s):  
Iwan Harsono ◽  
Herman Hindarso ◽  
Nani Indraswati

It has been long recognized that emulsion polymerization is a complex heterogeneous process involving transport of monomers and other species and free radicals between aqueous phase and organic phases. Though there are a number of models available in the literature, most of them deal only with specific aspects in emulsion polymerization and are far from being general. To simulate this complicated process and to achieve an adequate level of understanding, a Polymer Plus' software from Aspen Technology, Inc. has been used. The objective of this work is to illustrate the principle use of Polymers Plus' and to simulate and analysis the free-radical seeded emulsion copolymerization of styrene-butadiene process model in a semi-batch reactor. The base case simulation can be used to gain process understanding by analyzing how process variables and operating conditions during the course of a semi-batch reactor affect product quality.


2013 ◽  
Vol 33 (9) ◽  
pp. 813-821
Author(s):  
Hamid Javaherian Naghash ◽  
Mohammad Hossein Sheikhbahaei

Abstract A novel silicone-containing acrylic monomer, trimethylsiloxybutoxy dimethylsiloxybutyl acrylate (TSBA) and diethylene glycol monoallyl ether (DGME) was synthesized successfully. Then, a novel copolymeric surfactant was prepared by the free radical polymerization of TSBA and DGME in the presence of dioxane and azobisisobutyronitrile (AIBN) as a solvent and initiator, respectively. Next, a series of polyvinyl acetate (PVAc), 2-ethylhexyl acrylate (2-EHA) and polystyrene (PSt) latexes were successfully synthesized, each one throughout by the emulsion copolymerization in the presence of a copolymeric surfactant. This copolymeric surfactant exhibited excellent surface activity and the surface tension decreased with an increase in the concentration of the copolymeric surfactant.


Author(s):  
Joseph Zeaiter ◽  
Jose Romagnoli ◽  
Vincent G Gomes

Particle formation is a key step in emulsion polymerization reactions and has been the subject of extensive investigations in the past few decades. The main aim of this work was to investigate, both theoretically and experimentally, the conditions for secondary nucleation and particle evolution in batch and semi-batch emulsion polymerization. The effects of variation in monomer and emulsifier concentration in the feed, the distribution between the charge and the feed, temperature and the emulsion feed rate on polystyrene particle size distribution were investigated both theoretically and experimentally. The population balance and kinetic models developed were employed for predicting the product attributes for a range of reactor operating conditions. The sets of nonlinear algebraic and integro-differential evolution equations were solved efficiently for this work.Monomer and surfactant feed rates were found to have significant effects on the growth of polymer particles and consequently on the particle size. Different particle sizes and distributions were obtained using the same procedure with variable operating mode. A semi-batch reactor with variable monomer emulsion feed can produce latexes with variable polydispersity. A high initial rate of particle formation could lead to reduction in secondary nucleation and hence to the formation of a mono-modal PSD. This can be achieved by using high initiator and emulsifier concentrations in the feed, a high temperature, or a low monomer concentration in the charge. A low initial rate of nucleation increases the possibility of secondary nucleation and the formation of a bimodal PSD. The evolution of a bimodal PSD requires secondary nucleation after primary nucleation occurs.


1994 ◽  
Vol 30 (6) ◽  
pp. 237-246 ◽  
Author(s):  
A. Carucci ◽  
M. Majone ◽  
R. Ramadori ◽  
S. Rossetti

This paper describes a lab-scale experimentation carried out to study enhanced biological phosphate removal (EBPR) in a sequencing batch reactor (SBR). The synthetic feed used was based on peptone and glucose as organic substrate to simulate the readily biodegradable fraction of a municipal wastewater (Wentzel et al., 1991). The experimental work was divided into two runs, each characterized by different operating conditions. The phosphorus removal efficiency was considerably higher in the absence of competition for organic substrate between P-accumulating and denitrifying bacteria. The activated sludge consisted mainly of peculiar microorganisms recently described by Cech and Hartman (1990) and called “G bacteria”. The results obtained seem to be inconsistent with the general assumption that the G bacteria are characterized by anaerobic substrate uptake not connected with any polyphosphate metabolism. Supplementary anaerobic batch tests utilizing glucose, peptone and acetate as organic substrates show that the role of acetate in the biochemical mechanisms promoting EBPR may not be so essential as it has been assumed till now.


2014 ◽  
Vol 47 (19) ◽  
pp. 6591-6600 ◽  
Author(s):  
G. Billuart ◽  
E. Bourgeat-Lami ◽  
M. Lansalot ◽  
V. Monteil

2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Aliyu Bello A. ◽  
Arshad Ahmad ◽  
Adnan Ripin ◽  
Olagoke Oladokun

The moisture contents of powders is an important parameter that affects the quality and commercial value of spray dried products. The utility of predicted moisture content values from two droplet drying models were compared with experimental data for spray dried pineapple juice, using the Ranz-Marshal and its modified variants for the heat and mass transfer correlations. The droplet Diffusion model, using the Zhifu correlation, gave estimates with errors of about 8% at 165 oC, 9% at 171 oC, 26% at 179 oC and 2% at 185 oC. The Ranz-Marshal correlation also gave comparable results with this model while results using the Downing and modified Ranz-Marshall correlations widely diverged. The Energy balance model predicted completely dried juice particles, and short drying times, in contrast to the experimental data. The small error sizes of the Diffusion model improves on the wide error sizes of an earlier process model, making is useful as a first approximation choice, for spray drier design and simulation, especially for juices under comparable operating conditions.


Sign in / Sign up

Export Citation Format

Share Document