scholarly journals Development of Bearing Capacity Factor in Clay Soil with Normalized Undrained Shear Strength Behavior using The Finite Element Method

2011 ◽  
Vol 18 (2) ◽  
pp. 1
Author(s):  
Aswin Lim
2015 ◽  
Vol 31 (4) ◽  
pp. 381-390
Author(s):  
Y.-G. Hu ◽  
J. Ching

AbstractA new procedure for simulating the active lateral force (Pa) is proposed for clays with anisotropic spatially variable undrained shear strength (su). With the proposed procedure, the Pa samples can be simulated without the use of the random field finite element method (RFEM). It requires only simple algebraic calculations and chart checking. Two retaining wall examples with isotropic or anisotropic random field are used to demonstrate the effectiveness of the proposed procedure.


2020 ◽  
Vol 20 (5) ◽  
pp. 295-307
Author(s):  
André Arnold ◽  
Manuel Krähenbühl ◽  
Weiyuan Zhang ◽  
Amin Askarinejad

2014 ◽  
Vol 577 ◽  
pp. 1097-1103
Author(s):  
Tian De Jin ◽  
Lan Hui Guo

In this paper, the behavior of composite stub columns under different loading conditions is studied using the finite element method. The accuracy of the theoretical method is validated by comparing with the experimental results. The behavior of specimen under different loading conditions is analyzed. Then, based on the finite element method, the comparison of mechanical behavior under three typical loading conditions is studied. The results show that the difference on bearing capacity will become larger with the increase of steel area to concrete area ratio. For the core concrete loaded specimen with lower steel area-to-concrete area ratio, whose bearing capacity is the lowest, but its ductility is very good. With the increase of the steel yield strength, the bearing capacity will increase evidently for specimen loaded simultaneously. While for the specimen with only core concrete loaded, the steel yield strength has little influence except increase of ductility.


2008 ◽  
Vol 35 (6) ◽  
pp. 567-573 ◽  
Author(s):  
Valentim Capuzzo Neto ◽  
Márcio R.S. Corrêa ◽  
Marcio A. Ramalho

There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the shear strength of vertical interfaces of masonry walls.


2018 ◽  
Vol 64 (4) ◽  
pp. 89-103
Author(s):  
A. Nesterenko ◽  
G. Stolpovskiy ◽  
M. Nesterenko

AbstractThe actual load-bearing capacity of elements of a building system can be calculated by dynamic parameters, in particular by resonant frequency and compliance. The prerequisites for solving such a problem by the finite element method (FEM) are presented in the article. First, modern vibration tests demonstrate high accuracy in determination of these parameters, which reflects reliability of the diagnosis. Secondly, most modern computational complexes do not include a functional for calculating the load-bearing capacity of an element according to the input values of resonance frequencies. Thirdly, FEM is the basis for development of software tools for automating the computation process. The article presents the method for calculating flexural stiffness and moment of inertia of a beam construction system by its own frequencies. The method includes calculation algorithm realizing the finite element method.


Sign in / Sign up

Export Citation Format

Share Document