Proposal of a test specimen to evaluate the shear strength of vertical interfaces of running bond masonry walls

2008 ◽  
Vol 35 (6) ◽  
pp. 567-573 ◽  
Author(s):  
Valentim Capuzzo Neto ◽  
Márcio R.S. Corrêa ◽  
Marcio A. Ramalho

There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the shear strength of vertical interfaces of masonry walls.

2019 ◽  
Vol 957 ◽  
pp. 103-110
Author(s):  
Dan Chiorescu ◽  
Esmeralda Chiorescu ◽  
Gheorghe Nagîţ ◽  
Sergiu Constantin Olaru

Deep drawing is a complex process influenced by the geometric parameters of the die-punch system. In the present paper we study the behavior of the semi-finished product, in the process of drawing deep cylindrical parts, using the finite element method and the software package of the ANSYS program. In order to reduce the cost and design time, an analysis of the variation of the radius connection is carried out, resulting in low energy consumption, using the finite element method. By analysing the radius of connection of the plate, we identify future directions useful in substantiating the elaboration of a judicious experimental program and optimizing the geometric shape of the finished parts.


2012 ◽  
Vol 39 (4) ◽  
pp. 439-447 ◽  
Author(s):  
Jorge Varela-Rivera ◽  
Manuel Polanco-May ◽  
Luis Fernandez-Baqueiro ◽  
Eric I. Moreno

This paper presents the results of a study on the behavior of three full-scale confined masonry walls subjected to combined axial loads and out-of-plane uniform pressures. The variable studied was the wall axial load. Analytical models were developed to predict out-of-plane cracking and maximum pressures. The former was predicted using the finite element method and the latter using the spring-strut method. This last method was modified to include the effect of the wall axial load. Experimental cracking and maximum pressures were compared with those obtained from analytical models. Based on the experimental results, it was concluded that as the axial load increases, the out-of-plane maximum pressure also increases. However, this latter value is limited by crushing of the masonry. By comparing experimental and analytical results, it was concluded that the out-of-plane cracking and maximum pressures are in general well predicted by the analytical models developed in this work.


Author(s):  
Shalaho Dina Devy ◽  
Pretty Permatasari Hutahayan

The stability of open pit slopes in Biangan district, West Kutai Regency, East Kalimantan Province, is greatly influenced by groundwater conditions. The existence of groundwater reduces the shear strength of the materials which causes a decrease in the stability value of pit slopes. The main objective of this study is to assess the impact of groundwater on the stability of the low wall and high wall pit mining. Groundwater modeling is used to determine the prediction of groundwater level on the pit slope which determines the value of the slope stability. Slope stability analysis in this study was performed using the Finite Element Method, producing output in the form of strain zones, deformation and displacement values. Therefore, the Strength Reduction Factor (SRF) approach was used, which is a gradual reduction of shear strength until the values of cohesion and friction angles reach minimums and the slopes are at a critical state. Groundwater modeling results indicate that groundwater flows to the Biangan river with hydraulic heads between 76 and 108 meters above sea level. Based on the analysis using the Finite Element Method, the stability values of the pit slopes, which are influenced by groundwater, are 0.65 on the low wall and 1.40 on the high wall. The total displacements are 0.019 meters on the low wall and 0.002 meters on the high wall.  The impact of groundwater on the slope is an increase in the slope load. This increases the materials’ thrust and reduces the shear strength of the materials which reduces the rock mass that can function as a water seepage path. Thus, the recommendation for low wall pit construction is a safety factor of 7.79 with a total displacement of 0.020 meters.


Vestnik MGSU ◽  
2021 ◽  
pp. 1006-1014
Author(s):  
Nikolai N. Trekin ◽  
Dmitry Yu. Sarkisov ◽  
Sergey V. Trofimov ◽  
Vladimir V. Krylov ◽  
Elizaveta B. Evstafeva

Introduction. The issues of strength and deformability of reinforced concrete floors during punching remain insufficiently studied at present, despite the numerous publications in the technical literature. This article presents the results of experimental studies of the punching shear strength of fragments of conjugation of flat reinforced concrete monolithic slabs with a column under static loading. The purpose of these studies was to obtain experimental data on the stress-strain state of a fragment of a monolithic floor during static punching and to develop a spatial model based on the finite element method with subsequent numerical studies. Materials and methods. Experimental studies were carried out on a test bench. The characteristics of prototypes are given: dimensions, reinforcement, class of concrete and reinforcement. A test setup is described. For the numerical simulation of the slab-column interface, the ATENA software package was used, which allows for physically and geometrically nonlinear calculations of reinforced concrete structures, taking into account the real work of the materials used to create experimental models. Results. Comparison of the results for the breaking load, obtained during the experiment, with the results of numerical modeling by the finite element method and with the results of calculations using the methods of SP 63.13330.2018 and Eurocode 2. The diagrams of the distribution of deformations in reinforcement and concrete, breaking loads and patterns of distribution of cracks in the samples are obtained. Conclusions. The analysis of experimental and numerical studies made it possible to formulate the conditions for the pun­ching shear strength of flat slabs with longitudinal reinforcement and to give recommendations on the strength calculation under central loading.


2011 ◽  
Vol 204-210 ◽  
pp. 2206-2209
Author(s):  
Qing Wen Qu ◽  
Cheng Jun Wang ◽  
Xiao Dan Lou

The intensity of the spring was adjusted with finite element method and the distributive laws of stress field and displacement field were obtained. Thus the maximum shear stress was got through the formula of spring intensity. So, two methods on analyzing the stress of cylinder spiral tension spring were introduced in this paper. One is the finite element method; the other is the formula of spring intensity. Then analyzing the spring deformation under load clarifies the function of the finite element method upon spring design, selection and strength check, and improves the reliability of spring design and shortens design time.


Sign in / Sign up

Export Citation Format

Share Document