scholarly journals Effect of uniaxial stress upon remanent magnetization: Stress cycling and domain state dependence.

1978 ◽  
Vol 30 (5) ◽  
pp. 593-605 ◽  
Author(s):  
Jacques REVOL ◽  
Ron DAY ◽  
Michael FULLER
1984 ◽  
Vol 51 (3) ◽  
pp. 487-493 ◽  
Author(s):  
P. M. Naghdi ◽  
D. J. Nikkel

Within the framework of an existing purely mechanical, rate-type theory of plasticity, detailed calculations are presented for certain types of material response during stress and strain cycling in a uniaxial homogeneous deformation. These features pertain specifically to material response in stress cycling between fixed values of stress in tension and compression (not necessarily equal in magnitude) resulting in ratcheting of strain, and a type of saturation hardening caused by strain cycling between any two fixed values of strain when the mean value of stress (in tension and compression) tends to zero.


1977 ◽  
Vol 14 (9) ◽  
pp. 2047-2061 ◽  
Author(s):  
J. P. Hodych

This paper on small uniaxial stress changing the remanent magnetization of rock is a companion to my previous paper on stress changing susceptibility, both phenomena being of current interest in attempts at earthquake forecasting.Theoretical expressions are derived (using rigorous energy-minimization but ignoring thermal activation) for reversible change in remanence parallel to the stress axis for samples containing single-domain grains of a ferromagnet with cubic magnetocrystalline anisotropy (K1 positive or negative) and anisotropic magnetostriction. The grains are assumed to be non-interacting and randomly oriented spheres or ellipsoids of revolution elongated along [Formula: see text], [Formula: see text], or [Formula: see text]. Also, approximate expressions are given for samples containing multidomain grains with very strongly pinned walls. Thermal (or chemical), anhysteretic, and saturation remanence are discussed.For remanence change perpendicular to the stress axis, one expects −1/2 the above expressions for change parallel to the stress axis, which is easily proven for thermal remanence.The expressions predict that for magnetite-bearing rock the decrease in thermal remanence along a 100 bar (1 × 104 kPa) compression axis should be 0.76% for spherical single-domain grains, 0.27% for 1.4 to 1 elongation along [Formula: see text], and 0.09% for great elongation along [Formula: see text]. The decrease for equidimensional multidomain grains with strongly-pinned walls should be ~0.38%. These are all much smaller than the corresponding estimates for susceptibility, but both remanence and susceptibility decreases should become larger and more comparable as titanium content increases.


2010 ◽  
Vol 25 (9) ◽  
pp. 1784-1792 ◽  
Author(s):  
Jakob König ◽  
Matjaž Spreitzer ◽  
Boštjan Jančar ◽  
Julian Tolchard ◽  
Mari-Ann Einarsrud ◽  
...  

The dependence of the dielectric properties on the uniaxial compressive stress and the stress-strain properties was investigated for the case of (1-x)Na0.5Bi0.5TiO3–xNaTaO3 ceramics. Special attention was focused on the time component and the reversibility of the permittivity–stress dependence. The results were interpreted according to the samples' polar and symmetry states and the ferroelasticity. The time dependence and irreversible changes of the dielectric properties were connected with the domain structure of the materials, which is modified under the applied stress. The irreversible changes observed in the macroscopically nonferroelectric compositions were related to the ferroelastic properties. The stress sensitivity increased with the addition of NaTaO3 from 3% in pure Na0.5Bi0.5TiO3 to 14% in the sample with 15 mol% of NaTaO3 (at 200 MPa and 1 MHz). The reversibility was improved by mechanical modification of the samples' domain state, while the dielectric response remained time dependent.


Author(s):  
G.A. Bertero ◽  
R. Sinclair

Pt/Co multilayers displaying perpendicular (out-of-plane) magnetic anisotropy and 100% perpendicular remanent magnetization are strong candidates as magnetic media for the next generation of magneto-optic recording devices. The magnetic coercivity, Hc, and uniaxial anisotropy energy, Ku, are two important materials parameters, among others, in the quest to achieving higher recording densities with acceptable signal to noise ratios (SNR). The relationship between Ku and Hc in these films is not a simple one since features such as grain boundaries, for example, can have a strong influence on Hc but affect Ku only in a secondary manner. In this regard grain boundary separation provides a way to minimize the grain-to-grain magnetic coupling which is known to result in larger coercivities and improved SNR as has been discussed extensively in the literature for conventional longitudinal recording media.We present here results from the deposition of two Pt/Co/Tb multilayers (A and B) which show significant differences in their coercive fields.


Sign in / Sign up

Export Citation Format

Share Document