scholarly journals Oxygenated Volatile Organic Compounds (Anti-freezing Agents) in Decorative Water-based Paints Marketed in Nigeria

2018 ◽  
Vol 8 (18) ◽  
Author(s):  
Ajoke F. Idayat Apanpa-Qasim ◽  
Adebola A. Adeyi

Background. Consumer products such as paints are a potentially significant source of volatile organic compounds (VOCs) and oxygenated VOCs. Paints for construction and household use have been rapidly changing from oil-based to water-based paints and are one of the commonly identified sources of oxygenated VOCs in indoor environments. Objectives. Four different anti-freezing agents were identified and analyzed in 174 waterbased paint samples, purchased from popular paint markets in two metropolitan cities in Nigeria, Lagos and Ibadan. Methods. Paint samples were solvent extracted using acetonitrile and milli-Q water. Antifreezing agents in the extracts were identified and quantified using gas chromatography (GC)-mass spectrometry and a GC-flame ionization detector, respectively. Discussion. Four different anti-freezing agents were identified in the samples, ethylene glycol, diethylene glycol, triethylene glycol and propylene glycol. Their levels ranged from 1,000-1,980 ppm, diethylene glycol; 1,000–3,900 ppm, triethylene glycol; 1,090–2,510 ppm, propylene glycol and 1,350–2,710 ppm, ethylene glycol. Levels of anti-freezing agents in all of the paint samples were above the permissible limits of the European Union for VOCs in paints of 500 ppm. Results of multivariate statistical analyses clearly showed that triethylene glycol was the most commonly used anti-freezing agent in paints despite its numerous harmful health effects. Conclusions. We concluded that water-based paints marketed in Nigeria contain high concentrations of anti-freezing agents, which have harmful environmental and human health effects, especially to sensitive individuals such as children. Competing Interests. The authors declare no competing financial interests.

2012 ◽  
Vol 54 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Takashi Yorifuji ◽  
Miyuki Noguchi ◽  
Toshihide Tsuda ◽  
Etsuji Suzuki ◽  
Soshi Takao ◽  
...  

Indoor Air ◽  
2016 ◽  
Vol 27 (2) ◽  
pp. 320-328 ◽  
Author(s):  
D. W. Park ◽  
S.-H. Kim ◽  
J.-Y. Moon ◽  
J. S. Song ◽  
J. Choi ◽  
...  

2014 ◽  
Vol 77 (22-24) ◽  
pp. 1502-1521 ◽  
Author(s):  
Seong Kwang Lim ◽  
Han Seung Shin ◽  
Kyung Sil Yoon ◽  
Seung Jun Kwack ◽  
Yoon Mi Um ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5659
Author(s):  
Michael S. Breen ◽  
Vlad Isakov ◽  
Steven Prince ◽  
Kennedy McGuinness ◽  
Peter P. Egeghy ◽  
...  

Personal exposure to volatile organic compounds (VOCs) from indoor sources including consumer products is an understudied public health concern. To develop and evaluate methods for monitoring personal VOC exposures, we performed a pilot study and examined time-resolved sensor-based measurements of geocoded total VOC (TVOC) exposures across individuals and microenvironments (MEs). We integrated continuous (1 min) data from a personal TVOC sensor and a global positioning system (GPS) logger, with a GPS-based ME classification model, to determine TVOC exposures in four MEs, including indoors at home (Home-In), indoors at other buildings (Other-In), inside vehicles (In-Vehicle), and outdoors (Out), across 45 participant-days for five participants. To help identify places with large emission sources, we identified high-exposure events (HEEs; TVOC > 500 ppb) using geocoded TVOC time-course data overlaid on Google Earth maps. Across the 45 participant-days, the MEs ranked from highest to lowest median TVOC were: Home-In (165 ppb), Other-In (86 ppb), In-Vehicle (52 ppb), and Out (46 ppb). For the two participants living in single-family houses with attached garages, the median exposures for Home-In were substantially higher (209, 416 ppb) than the three participant homes without attached garages: one living in a single-family house (129 ppb), and two living in apartments (38, 60 ppb). The daily average Home-In exposures exceeded the estimated Leadership in Energy and Environmental Design (LEED) building guideline of 108 ppb for 60% of the participant-days. We identified 94 HEEs across all participant-days, and 67% of the corresponding peak levels exceeded 1000 ppb. The MEs ranked from the highest to the lowest number of HEEs were: Home-In (60), Other-In (13), In-Vehicle (12), and Out (9). For Other-In and Out, most HEEs occurred indoors at fast food restaurants and retail stores, and outdoors in parking lots, respectively. For Home-In HEEs, the median TVOC emission and removal rates were 5.4 g h−1 and 1.1 h−1, respectively. Our study demonstrates the ability to determine individual sensor-based time-resolved TVOC exposures in different MEs, in support of identifying potential sources and exposure factors that can inform exposure mitigation strategies.


2019 ◽  
Author(s):  
Haoxuan Chen ◽  
Xinyue Li ◽  
Maosheng Yao

AbstractBreathing air is a fundamental human need, yet its safety, when challenged by various harmful or lethal substances, is often not properly guarded. For example, air toxicity is currently monitored only for single or limited number of known toxicants, thus failing to fully warn against possible hazardous air. Here, we discovered that within minutes living rats emitted distinctive profiles of volatile organic compounds (VOCs) via breath when exposed to various airborne toxicants such as endotoxin, O3, ricin, and CO2. Compared to background indoor air, when exposed to ricin or endotoxin aerosols breath-borne VOC levels, especially that of carbon disulfide, were shown to decrease; while their elevated levels were observed for O3 and CO2 exposures. A clear contrast in breath-borne VOCs profiles of rats between different toxicant exposures was observed with a statistical significance. Differences in MicroRNA regulations such as miR-33, miR-146a and miR-155 from rats’ blood samples revealed different mechanisms used by the rats in combating different air toxicant challenges. Similar to dogs, rats were found here to be able to sniff against toxic air by releasing a specific breath-borne VOC profile. The discovered science opens a new arena for online monitoring air toxicity and health effects of pollutants.TOC


Sign in / Sign up

Export Citation Format

Share Document