scholarly journals Effect of granulosa and cumulus cells on in vitro development of the bovine follicular oocytes

1995 ◽  
Vol 8 (4) ◽  
pp. 317-320
Author(s):  
K. S. Im ◽  
H. J. Kim ◽  
K. M. Chung ◽  
H. S. Kim ◽  
K. W. Park ◽  
...  
2002 ◽  
Vol 14 (4) ◽  
pp. 191 ◽  
Author(s):  
M. A. Martinez-Diaz ◽  
K. Ikeda ◽  
Y. Takahashi

The effects of cycloheximide (CHX) treatment and the interval between fusion and activation on the development of pig nuclear transfer (NT) embryos constructed with enucleated oocytes and serum-starved granulosa/cumulus cells were examined. One group of couplets was fused and activated simultaneously (FAS) by a single electrical pulse (activation pulse). Another three groups of couplets were fused electricaly 1.5, 2.5 or 4.5 h before being subjected to the activation pulse (FBA). Each group was divided into two subgroups and incubated with or without CHX. The NT embryos treated with CHX showed a high and stable cleavage rate, regardless of the interval between fusion and activation; however, development to blastocysts was improved only when the NT embryos were subjected to FAS with CHX. These results indicate that CHX-sensitive events occurring shortly after FAS may be responsible for the development to blastocysts. Fusion pulse rarely activated M II oocytes, but rapidly dropped the p34cdc2 kinase activity in NT embryos. A pronucleus-like structure was observed 2-2.5 h after the activation pulse with CHX in NT embryos of both the FAS and FBA groups. Therefore, successive inactivation of M-phase promoting factor and cytostatic factor at a certain short interval may also play an important role in the development of NT embryos.


2007 ◽  
Vol 19 (1) ◽  
pp. 262
Author(s):  
W. Fujii ◽  
H. Funahashi

If diploid zygotes constituted with a somatic and a maternal genome could successfully develop to term, a new reproductive method would be developed to produce animals. However, there appears to be little information on this subject. In the present study, in vitro early development of the constituted zygotes was examined. A cumulus cell was microinjected into a rat non-enucleated oocyte, the reconstructed oocyte was chemically activated, and the pronuclear formation and in vitro development of the embryo was observed. Prepubertal Wistar female rats (21–27 days old) were induced to superovulate with an IP injection of 15 IU of eCG, followed by 15 IU of hCG 48 h later. Cumulus cells were removed from oocytes by pipetting with 0.1% hyaluronidase. Experiment 1: The DNA content of cumulus cells for microinjection was evaluated by flow cytometry. Experiment 2: The optimal concentration of SrCl2 for activation of rat oocytes was examined. Experiment 3: Cumulus cells were injected into mature oocytes in BSA-free HEPES-buffered mKRB containing 0.1% polyvinyl alcohol (PVA) and cytochalasin B (5 �g mL-1), and were then chemically activated by treatment in Ca2+-free mKRB containing 5 mM SrCl2 for 20 min at 0 to 0.5 (A), 1 to 1.5 (B), or 3 to 3.5 h (C) after injection. Activated embryos were cultured in droplets of mKRB in an atmosphere of 5% CO2 in air at 37�C for 9 to 12 h. After being observed for pronuclear formation, the embryos were transferred into mR1ECM-PVA, and the cleavage and blastocyst formation rates were examined 24 and 120 h later, respectively. Results from 3 to 7 replicates were analyzed by ANOVA and Duncan's multiple range test. A total of 90.0 and 9.5% of cumulus cells derived from ovulated oocyte–cumulus complexes contained 2C and 4C DNA contents, respectively. Survival rates did not differ among oocytes stimulated with 0 to 5 mM SrCl2 (96.7–100%) but did differ between those stimulated with 1.25 and 10 mM SrCl2 (100 and 72.9%, respectively). Activation rates of oocytes increased at higher SrCl2 concentrations and were higher at 5 and 10 mM (92.6 and 98.5%, respectively) than at other concentrations. When cumulus-injected oocytes were activated after various periods after the injection, the incidences of pronuclear formation and cleavage did not differ among the periods (A: 95.0 and 81.3%; B: 85.6 and 85.0%; and C: 82.7 and 84.6%, respectively). Although a majority of the embryos developed to the 2- to 4-cell stages (78.7%; 152/208), the blastocyst formation rate was very low (0.8%; 2/208). In conclusion, rat non-enucleated oocytes injected with a cumulus cell can form pronuclei and cleave following chemical activation, but blastocyst formation of the embryos is very limited.


1994 ◽  
Vol 56 (2) ◽  
pp. 379-380
Author(s):  
Anuchai PINYOPUMMIN ◽  
Yoshiyuki TAKAHASHI ◽  
Hee Tae CHEONG ◽  
Mitsugu HISHINUMA ◽  
Hiroshi KANAGAWA

2005 ◽  
Vol 17 (2) ◽  
pp. 162
Author(s):  
S. Akagi ◽  
B. Tsuneishi ◽  
S. Watanabe ◽  
S. Takahashi

It has been reported that aggregation of two nuclear transfer (NT) mouse embryos shows an improvement in full-term development (Boiani M et al. 2003 EMBO J. 22, 5304–5312). In this study, we examined the effect of aggregation on in vitro development of bovine NT embryos. As donor cells for NT, cumulus cells of passage 3–5 were used following culture in serum-starved medium for 5–7 days. NT was performed as previously described (Akagi S et al. 2003 Mol. Reprod. Dev. 66, 264–272). NT embryos were cultured in a serum-free medium (IVD-101, Research Institute of Functional Peptide Co., Ltd., Shimojo, Yamagat, Japan). Eight-cell-stage embryos on Day 2 or 16- to 32-cell-stage embryos on day 4 were used for embryo aggregation after removal of the zona pellucida. A small depression was made in a 25-μL drop of TCM-199 with 50 μg/mL phytohemagglutinin (TCM199/PHA) or IVD-101 using a darning needle. Two or three NT embryos were placed into the depression in the drop of TCM199/PHA for 20 min. NT aggregates were then moved into the depression in the drop of IVD-101 and cultured until Day 7. In vitro development of NT aggregates was summarized in Table 1. There were no differences in the cell number and ICM ratio of blastocysts between non-aggregated zona-intact and zona-free embryos. All aggregates of three NT embryos developed to the blastocyst stage and the cell number of these blastocysts was significantly higher than that of non-aggregated NT blastocysts. These results indicate that removal of the zona pellucida does not affect the cell number and ICM ratio of blastocysts and that aggregates of three NT embryos can develop to blastocysts with high cell numbers which are equivalent to in vivo-derived embryos (166 ± 11, Knijn HM et al. 2003 Biol. Reprod. 69, 1371–1378). Table 1. Development, cell number, and ICM ratio of NT aggregates


2015 ◽  
Vol 27 (1) ◽  
pp. 269
Author(s):  
A. De Stefano ◽  
A. Gambini ◽  
D. Salamone

Embryo aggregation has been shown to improve embryo development in several species. However, the effects seem to be different among species. Thus, the aim of this study was to compare the effect of embryo aggregation over in vitro development and blastocyst quality of bovine and feline parthenogenetic (PA) embryos. To this aim, bovine cumulus-oocyte complexes (COC) were collected from slaughterhouse ovaries, whereas cat ovaries were obtained from ovariectomized animals. The COC were in vitro matured in TCM199 supplemented following standard protocols for each species. After 24 h, cumulus cells and zona pellucidae were removed. Matured oocytes were selected and activated by 5 µM ionomycin treatment for 4 min followed by incubation in 1.9 mM 6-DMAP. Bovine and feline PA embryos were cultured in SOF medium in the well of well system in two different groups: only one PA embryo per microwell (1X); and three PA embryos per microwell (3X, aggregated embryos). Cleavage and blastocyst rates from all groups were assessed at Days 2 and 7, respectively. Size of blastocysts was measured at Day 7 using a millimetre eyepiece, and total cell number was determined by Hoechst 33342 staining. Blastocyst rates and embryo size were analysed by Fisher's test (P < 0.05) and total cell numbers by Kruskal–Wallis test with Dunn's correction (P < 0.05). Statistical differences were found in PA blastocyst rates between experimental groups (1X: 15/104, 24.6% v. 3X: 27/37, 62.2% for feline; and 1X: 21/113, 19.4% v. 3X: 20/32, 62.5% for bovine), but no differences were found between species. In addition, there was no statistical difference in the number of blastocysts obtained per oocyte used in any of the experimental groups. Bovine aggregated PA blastocysts were significantly larger than non-aggregated embryos (>200 microns, 1X: 2/20, 10% v. 3X: 9/19, 47.4%), but no differences were found in cell number. On the other hand, cat aggregated PA blastocysts had significantly higher cell numbers (1X: 122.4 ± 79.66 cells v. 3X: 259.8 ± 137.1 cells), but no differences were found in blastocyst size. This observation can contribute in the understanding of embryo physiology, suggesting that benefits of embryo aggregation in parthenogenic embryos vary among these species.


2000 ◽  
Vol 54 (4) ◽  
pp. 559-570 ◽  
Author(s):  
S.J. Uhm ◽  
H.M. Chung ◽  
C. Kim ◽  
H. Shim ◽  
N.-H. Kim ◽  
...  

2005 ◽  
Vol 17 (2) ◽  
pp. 221 ◽  
Author(s):  
M.R.B. Mello ◽  
C.E. Ferguson ◽  
A.S. Lima ◽  
M.B. Wheeler

In vitro embryo culture is an important step of in vitro production of bovine embryos. It has been shown that IVF-derived bovine embryos cultured in KSOM or CR1aa have high development rates. In our laboratory, we have observed that 8-cell embryos are morphologically superior when embryos are cultured in KSOM whereas blastocysts are morphologically superior when embryos are cultured in CR1aa. Based on these observations, we hypothesized that development of IVF-derived bovine embryos can be improved by sequential use of these media (KSOM and CR1aa). The aim of this experiment was to compare the in vitro development of bovine embryos cultured in KSOM, CR1aa or KSOM/CR1aa supplemented with BSA at Day 0 and BSA and FBS at Day 3. In order to accomplish the sequential culture, fertilized oocytes where cultured in KSOM to the 8-cell stage and then transferred to CR1aa for further development. Oocytes were purchased from Bomed (Madison, WI, USA), and after 22 hours of maturation were fertilized with frozen-thawed semen for 5 hours at 39°C in 5% CO2. After fertilization, the presumptive zygotes were denuded from cumulus cells by votexing and were randomly allotted to one of 3 treatments: (1) cultured only in KSOM (n = 110), (2) cultured only in CR1aa (n = 102), and (3) cultured in KSOM in the first 3 days and then in CR1aa from Day 3 to Day 9 (n = 110). The embryo culture was carried out in 50-μL droplets of medium that were placed in an airtight modular incubator filled with 5% CO2, 5% O2 and 90% N2. The embryos were evaluated on Days 6 to 9 post insemination. All embryo developmental rates were calculated from presumptive zygotes. The Day 6 morula rates were 52%, 40%, and 47% for KSOM, CR1aa, and KSOM/CR1aa, respectively. The Day 7 blastocyst rates for KSOM (40%), CR1aa (25%), and KSOM/CR1aa (30%) were not significantly different; however, Day 9 hatched blastocyst rates were significantly higher (P < 0.05) for KSOM (22%) compared to CR1aa (9%) but not different from KSOM/CR1aa (14%). Regarding embryo quality, Day 7 transferable embryos rates (Grade 1 and Grade 2) were 35%, 25%, and 30%, respectively for KSOM, CR1aa, and KSOM/CR1aa; however, no significant difference was observed. These results indicate that IVF-derived bovine embryos can develop in KSOM, CR1aa, or KSOM/CR1aa with no significant difference among morula, blastocyst and hatched blastocyst rates. However, the combination of KSOM and CR1aa during in vitro culture did not decrease the morula and blastocyst rates.


2016 ◽  
Vol 28 (2) ◽  
pp. 237
Author(s):  
S. H. Lee ◽  
H. J. Oh ◽  
G. A. Kim ◽  
M. J. Kim ◽  
Y. B. Choi ◽  
...  

In oestrus stage, canine oocytes surrounded by cumulus cells undergo maturation in oviduct for 3 days after ovulation. We hypothesised that canine cumulus cells (cCC) and canine oviduct cells (cOC) in oestrus stage might affect the maturation of oocyte and embryo development. Therefore, the present study was aimed to compare the effects of cCC and cOC co-culture system on oocyte in vitro maturation and embryo in vitro development. cCC were separated from cumulus‐oocyte complex (COC) in ovary from bitches in oestrus phase. cOC were collected from oviduct flushing of bitches in oestrus phase. Both cCC and cOC were cultured and cryopreserved until use for co-culture. In the first experiment, the effect of co-culture using cCC and cOC on porcine oocyte in vitro maturation (IVM) were investigated. The porcine COC were randomly cultured in different co-culture groups as follows: 1) co-culturing with cCC for 42 h, 2) co-culturing with cOC for 42 h, and 3) culturing in absence of cCC or cOC. After IVM, extrusion of the first polar body was observed under a microscope. In the second experiment, the matured oocytes with the first polar body derived from each group were activated with electrical stimulus. Parthenotes were cultured in porcine zygote medium-5 (PZM-5) for 7 days at 39°C, 5% CO2 and O2 in a humidified atmosphere. The embryo developmental competence was estimated by assessing the in vitro development under microscope. The third experiment was to evaluate the reactive oxygen species (ROS) levels in each supernatant medium obtained from cCC and cOC co-culture group after IVM using a OxiselectTM ROS ELISA Assay kit. Last, analysis of genes (MAPK1/3, SMAD2/3, GDF9 and BMP15) expression in cCC and cOC co-cultured with porcine COC using real-time PCR is in progress. As results, IVM rate of cOC group (91.19 ± 0.45%) was significantly higher than that of cCC and control group (86.50 ± 0.61% and 79.81 ± 0.82%; P < 0.05). Also, cOC groups expressed the highest efficiency in cleavage rate, blastocyst formation rate, and the total cell number in blastocyst (P < 0.05). In ROS levels, cOC group (555 ± 7.77 nM) were significantly lower than cCC and control groups (596.8 ± 8.52 nM and 657.8 ± 11.34 nM). The present study demonstrated that co-culture with cOC improved the in vitro oocyte maturation and the in vitro development rate of porcine embryos. The ROS level decreased in cOC co-culture would have beneficial influence on oocytes maturation. For further study, we will investigate the relation between gene expression related to oocyte maturation and the co-culture results. This research was supported by a global PhD Fellowship Program through NRF funded by the Ministry of Education (NRF-20142A1021187), RDA (#PJ010928032015), IPET (#311011–05–4-SB010, #311062–04–3-SB010), Research Institute for Veterinary Science, and the BK21 plus program.


Sign in / Sign up

Export Citation Format

Share Document