294 IN VITRO DEVELOPMENT OF RAT OOCYTES FOLLOWING MICROINJECTION OF A CUMULUS CELL INTO THE OOPLASM AND CHEMICAL ACTIVATION

2007 ◽  
Vol 19 (1) ◽  
pp. 262
Author(s):  
W. Fujii ◽  
H. Funahashi

If diploid zygotes constituted with a somatic and a maternal genome could successfully develop to term, a new reproductive method would be developed to produce animals. However, there appears to be little information on this subject. In the present study, in vitro early development of the constituted zygotes was examined. A cumulus cell was microinjected into a rat non-enucleated oocyte, the reconstructed oocyte was chemically activated, and the pronuclear formation and in vitro development of the embryo was observed. Prepubertal Wistar female rats (21–27 days old) were induced to superovulate with an IP injection of 15 IU of eCG, followed by 15 IU of hCG 48 h later. Cumulus cells were removed from oocytes by pipetting with 0.1% hyaluronidase. Experiment 1: The DNA content of cumulus cells for microinjection was evaluated by flow cytometry. Experiment 2: The optimal concentration of SrCl2 for activation of rat oocytes was examined. Experiment 3: Cumulus cells were injected into mature oocytes in BSA-free HEPES-buffered mKRB containing 0.1% polyvinyl alcohol (PVA) and cytochalasin B (5 �g mL-1), and were then chemically activated by treatment in Ca2+-free mKRB containing 5 mM SrCl2 for 20 min at 0 to 0.5 (A), 1 to 1.5 (B), or 3 to 3.5 h (C) after injection. Activated embryos were cultured in droplets of mKRB in an atmosphere of 5% CO2 in air at 37�C for 9 to 12 h. After being observed for pronuclear formation, the embryos were transferred into mR1ECM-PVA, and the cleavage and blastocyst formation rates were examined 24 and 120 h later, respectively. Results from 3 to 7 replicates were analyzed by ANOVA and Duncan's multiple range test. A total of 90.0 and 9.5% of cumulus cells derived from ovulated oocyte–cumulus complexes contained 2C and 4C DNA contents, respectively. Survival rates did not differ among oocytes stimulated with 0 to 5 mM SrCl2 (96.7–100%) but did differ between those stimulated with 1.25 and 10 mM SrCl2 (100 and 72.9%, respectively). Activation rates of oocytes increased at higher SrCl2 concentrations and were higher at 5 and 10 mM (92.6 and 98.5%, respectively) than at other concentrations. When cumulus-injected oocytes were activated after various periods after the injection, the incidences of pronuclear formation and cleavage did not differ among the periods (A: 95.0 and 81.3%; B: 85.6 and 85.0%; and C: 82.7 and 84.6%, respectively). Although a majority of the embryos developed to the 2- to 4-cell stages (78.7%; 152/208), the blastocyst formation rate was very low (0.8%; 2/208). In conclusion, rat non-enucleated oocytes injected with a cumulus cell can form pronuclei and cleave following chemical activation, but blastocyst formation of the embryos is very limited.

Zygote ◽  
2005 ◽  
Vol 13 (2) ◽  
pp. 177-185 ◽  
Author(s):  
A. Nader Fatehi ◽  
Bernard A.J. Roelen ◽  
Ben Colenbrander ◽  
Eric J. Schoevers ◽  
Bart M. Gadella ◽  
...  

The present study was conducted to evaluate the function of cumulus cells during bovine IVF. Oocytes within cumulus–oocyte complexes (COCs) or denuded oocytes (DOs) were inseminated in control medium, or DOs were inseminated in cumulus cell conditioned medium (CCCM). DOs exhibited reduced cleavage and blastocyst formation rates when compared with intact COCs. The reduced blastocyst formation rate of DOs resulted from reduced first cleavage but subsequent embryo development was not changed. Live-dead staining and staining for apoptotic cells revealed no differences in blastocysts from oocytes fertilized as COC or DO. Fertilization of DOs in CCCM partially restored the cleavage rate, suggesting that factors secreted by cumulus cells are important for fertilization but that physical contact between oocytes and cumulus cells is required for optimal fertilization and first cleavage. Exposure of COCs to hydrogen peroxide shortly before fertilization reduced the cleavage rate, but did not lead to enhanced death of cumulus cells or oocyte death. Exposure of DOs to hydrogen peroxide, however, resulted in oocyte death and a complete block of first cleavage, suggesting that cumulus cells protect the oocyte against oxidative stress during fertilization.


Zygote ◽  
2008 ◽  
Vol 16 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Wataru Fujii ◽  
Hiroaki Funahashi

SummaryThe present study examined in vitro development and the cytological status of non-enucleated rat oocytes after microinjection of cumulus nuclei and chemical activation. Oocyte–cumulus complexes were collected from gonadotropin-treated prepubertal female Wistar rats 14 h after human chorionic gonadotropin (hCG) injection. Cumulus nuclei were injected into ovulated oocytes and then stimulated in the presence of 5 mM SrCl2 for 20 min at various time points (0–3.5 h) after injection. Some of the reconstituted eggs were cultured to observe the pronuclear formation, cleavage, and blastocyst formation. The incidences of eggs forming at least one pronucleus or containing two pronuclei were not significantly different among the periods (82.4–83.5% and 43.4–51.9%, respectively). Nor did the incidences of eggs cleaving (86.7–97.7%) and developing to the blastocyst stage (0–3.5%) differ depending on when, after injection, stimulation began. When some of the reconstituted eggs were observed for cytological morphology 1–1.5 h after injection, 71.7% of the eggs caused premature chromatin condensation, but only 46.2% of them formed two spindles around each of maternal and somatic chromatins. However, the morphology of the somatic spindles differed from that of the spindles, which formed around the oocyte chromatins. Only 7.5% of the eggs contained the normal chromosomal number. In many reconstituted oocytes, before activation, an abnormal spindle formation was observed in the somatic chromatins. In conclusion, these results show that non-enucleated rat oocytes injected with cumulus nuclei can form pronuclei and cleave following chemical activation, whereas blastocyst formation is very limited, probably caused by abnormalities in the spindle formation and distribution of somatic chromatids.


2020 ◽  
Vol 18 (3) ◽  
pp. 455-463
Author(s):  
Nguyen Khanh Van ◽  
Quan Xuan Huu ◽  
Vu Thi Thu Huong ◽  
Pham Doan Lan

The present study was conducted to evaluate the effects of 6-dimethylaminopurine (6-DMAP), cytochalasin B (CyB) and cycloheximide (CHX) on in vitro development of “I” pig somatic cell nuclear transfer embryos. Oocytes after SCNT were activated with 2 mM 6-DMAP; 7.5 µg/ml CyB and 10 µg/ml CHX. The results indicated that the rate of oocytes no lysis in group activated by CHX was significantly lower compared with those in group activated by 6-DAMP and CyB (90.91% and 88.01%, respectively, P < 0,05). The blastocyst formation rate did not differ between group actvated by 6-DAMP and CyB (24.93% vs 24.4%, P > 0.05). Meanwhile the blastocyst formation rate in group activated by CHX was 15.01%, significantly lower than that in group activated by 6-DAMP and CyB (P < 0.05). The average number of cells in the blastocyst in group activated by 6-DAMP and CyB were higher than that in group activated by CHX (47.78, 44.57 vs 39.42, respectively). The use of 6-DMAP and CyB in the activation of pig oocytes after SCNT was more effective than CHX. The results of this study show that for the first time in Vietnam, we have created “I” pig SCNT embryo without zona pellucida with the rate of blastocyst formation from 15.01% to 24.93%.


2006 ◽  
Vol 18 (2) ◽  
pp. 285
Author(s):  
M. Nakai ◽  
N. Kashiwazaki ◽  
A. Takizawa ◽  
N. Maedomari ◽  
M. Ozawa ◽  
...  

Failure of sperm nuclear decondensation has been reported after injection into oocytes in pigs (Kren et al. 2003 J. Reprod. Dev. 49, 271-273). We examined the effects of pretreatment of spermatozoa with Triton X-100 (TX-100) and dithiothreitol (DTT) and electric stimulation of oocytes after injection on sperm decondensation, male pronuclear formation, and in vitro development to the blastocyst stage. We performed three replicates in each experimental group, with a total of about 70 oocytes per group. In Experiment 1, spermatozoa were pretreated with 1% TX-100 and 5 mM DTT (T+D), and injected into IVM oocytes that were collected from crossbred gilts. Electric stimulation (1.5 kV/cm, 20 �s; Nakai et al. 2003 Biol. Reprod. 68, 1003-1008) was applied 1 h to the oocytes after the injection (the stimulated group) or was not applied (the nonstimulated group). Some of the oocytes in each group were evaluated for morphological changes of sperm nuclei at hourly intervals until 10 h post-injection. Of nonstimulated oocytes, those injected with untreated spermatozoa showed a delayed peak in nuclear decondensation (39.4 to 44.1%, 3-6 h after the injection) compared to that of oocytes injected with T+D treated spermatozoa (57.0 to 52.6%, 1-1 h). The rate of male pronuclear formation increased after 4 h post-stimulation (by 40 to 60%) when the injected oocytes were stimulated, whether or not spermatozoa were pretreated. In nonstimulated oocytes, the rate of male pronuclear formation stayed at the basal level (less than 20%) throughout the culture period regardless of sperm treatments. Thus, the T+D treatment of spermatozoa did not affect decondensation and pronuclear formation. In Experiment 2, the effects of electric stimulation and sperm treatments with T+D on the rate of blastocyst formation and the mean numbers of cells per blastocyst were evaluated. Oocytes that were stimulated after injection of either T+D-treated or untreated spermatozoa showed significantly higher percentages of blastocyst formation (24.8% and 27.1%, respectively) than did nonstimulated oocytes (1.1% and 4.1% for T+D-treated and untreated, respectively; P < 0.01). The rate of blastocyst formation was not different between the T+D-treated and the untreated groups. The mean number of cells per blastocyst was not different among all groups (14.0-29.4). In conclusion, the pretreatment of sperm with TX-100 and DTT shifted the timing of sperm nuclear decondensation forward. However, pronuclear formation and development to the blastocyst stage in vitro were not improved by the sperm treatment. Electric stimulation to the injected oocytes enhances in vitro development to the blastocyst stage in pigs.


1995 ◽  
Vol 8 (4) ◽  
pp. 317-320
Author(s):  
K. S. Im ◽  
H. J. Kim ◽  
K. M. Chung ◽  
H. S. Kim ◽  
K. W. Park ◽  
...  

2017 ◽  
Vol 41 (3) ◽  
pp. 1255-1266 ◽  
Author(s):  
Jun-Xue Jin ◽  
Sanghoon Lee ◽  
Anukul Taweechaipaisankul ◽  
Geon A. Kim ◽  
Byeong Chun Lee

Background/Aims: Hypoacetylation caused by aberrant epigenetic nuclear reprogramming results in low efficiency of mammalian somatic cell nuclear transfer (SCNT). Many epigenetic remodeling drugs have been used in attempts to improve in vitro development of porcine SCNT embryos. In this study, we examined the effects of LAQ824, a structurally novel histone acetylase inhibitor, on the nuclear reprogramming and in vitro development of porcine SCNT embryos. Methods: LAQ824 treatment was supplemented during the culture of SCNT embryos. The reprogramming levels were measured by immunofluorescence and quantified by image J software. Relative expression levels of 18 genes were analyzed by quantitative real-time PCR. Results: 100 nM LAQ824 treatment of post-activation SCNT embryos for 24 h significantly improved the subsequent blastocyst formation rate. The LAQ824 treatment enhanced histone 3 lysine 9 (H3K9) levels, histone 4 lysine 12 (H4K12) levels, and reduced global DNA methylation levels as well as anti-5-methylcytosine (5-mC) at the pseudo-pronuclear and 2-cell stages. Furthermore, LAQ824 treatment positively regulated the mRNA expression of genes for histone acetylation (HAT1, HDAC1, 2, 3, and 6), DNA methylation (DNMT1, 3a and 3b), development (Pou5f1, Nanog, Sox2, and GLUT1) and apoptosis (Bax, Bcl2, Caspase 3 and Bak) in blastocysts. Conclusion: Optimum exposure (100 nM for 24 h) to LAQ824 post-activation improved the in vitro development of porcine SCNT embryos by enhancing levels of H3K9 and H4K12, reducing 5-mC, and regulating gene expression.


2002 ◽  
Vol 14 (4) ◽  
pp. 191 ◽  
Author(s):  
M. A. Martinez-Diaz ◽  
K. Ikeda ◽  
Y. Takahashi

The effects of cycloheximide (CHX) treatment and the interval between fusion and activation on the development of pig nuclear transfer (NT) embryos constructed with enucleated oocytes and serum-starved granulosa/cumulus cells were examined. One group of couplets was fused and activated simultaneously (FAS) by a single electrical pulse (activation pulse). Another three groups of couplets were fused electricaly 1.5, 2.5 or 4.5 h before being subjected to the activation pulse (FBA). Each group was divided into two subgroups and incubated with or without CHX. The NT embryos treated with CHX showed a high and stable cleavage rate, regardless of the interval between fusion and activation; however, development to blastocysts was improved only when the NT embryos were subjected to FAS with CHX. These results indicate that CHX-sensitive events occurring shortly after FAS may be responsible for the development to blastocysts. Fusion pulse rarely activated M II oocytes, but rapidly dropped the p34cdc2 kinase activity in NT embryos. A pronucleus-like structure was observed 2-2.5 h after the activation pulse with CHX in NT embryos of both the FAS and FBA groups. Therefore, successive inactivation of M-phase promoting factor and cytostatic factor at a certain short interval may also play an important role in the development of NT embryos.


2008 ◽  
Vol 20 (1) ◽  
pp. 105
Author(s):  
E. S. Ribeiro ◽  
R. P. C. Gerger ◽  
L. U. Ohlweiler ◽  
I. Ortigari Jr ◽  
F. Forell ◽  
...  

Cloning by somatic cell nuclear transfer has been associated with developmental abnormalities, with the level of heteroplasmy imposed by cell fusion being one of many potential determining factors. As the cytoplast exerts a key role in nuclear reprogramming, embryo aggregation is an alternative to minimize such negative effects during cloning. The aim of this study was to determine the effect of fusion of hemi-cytoplasts or aggregation of hemi-embryos on in vitro development and cell number of clone and parthenote embryos. Bovine cumulus–oocyte complexes (COCs) from slaughterhouse ovaries, after 17 h of IVM, were used for the production of parthenotes by chemical activation, and clone embryos by handmade cloning (HMC) (Vajta et al. 2003 Biol. Reprod. 68, 571–578). Following cumulus and zona removal, oocytes were manually bisected, followed by segregation of nucleated and enucleated hemi-cytoplasts by fluorescence using Hoechst stain. One or two enucleated hemi-cytoplasts were paired with an adult skin somatic cell from primary cultures (>90% confluence) and fused using a 25V AC pre-pulse, followed by a single 1.2 kV cm–1 DC pulse for 10 μs. Reconstructed clone structures and groups of zona-intact oocytes and nucleated hemi-cytoplasts were chemically activated in ionomycin and 6-DMAP. Clone and parthenote structures were in vitro-cultured in the WOW system (Vajta et al. 2000 Mol. Reprod. Dev. 55, 256–264) for 7 days, as follows: (G1) clone embryos reconstructed by aggregation of two hemi-embryos per WOW; or (G2) one embryo (two hemi-cytoplasts + cell) perWOW; and parthenote embryos composed of (G3) zona-intact oocytes cultured in wells; or aggregation of one (G4), two (G5), three (G6), or four (G7) nucleated hemi-cytoplasts per WOW. Fusion, cleavage (Day 2), and blastocyst (Day 7) rates, evaluated on a per WOW basis, were compared by the chi-square test (8 replications). Total cell number estimated by fluorescence (Hoechst stain) in blastocysts was analyzed by the Student t-test. Fusion rates of one hemi-cytoplast + cell (G1; 275/592, 46.5%) were lower than for two hemi-cytoplasts + cell (G2; 264/337, 78.3%). Cleavage rates were lower in G1 and G4 and higher in G6 and G7 than G2 and G3. A significant linear increase in blastocyst rates was observed in G5, G6, and G7. Total cell numbers were lower in parthenotes than in clones, except in G6 and G7. The lower fusion and cleavage rates after the aggregation of two clone hemi-embryos (G1) caused nearly a 50% reduction in the overall cloning efficiency. In addition, the aggregation of parthenogenetic hemi-embryos increased cleavage and blastocyst rates and cell number. However, aggregation of hemi structures did not improve blastocyst yield or cell number on a hemi-cytoplast basis. Table 1. In vitro development of parthenote or clone bovine embryos This work was supported by funding from CAPES/Brazil.


2010 ◽  
Vol 22 (1) ◽  
pp. 181
Author(s):  
N. Canel ◽  
R. Bevacqua ◽  
D. Salamone

A combined treatment of dehydroleucodine (DhL) and cytochalasin B (CB) was previously demonstrated to induce pronuclear formation of bovine oocytes (Canel and Salamone 2008 Reprod. Fertil. Dev. 21, 214-215). The aim of this study was to evaluate the potential of DhL combined with CB to induce diploid activation of parthenogenetic embryos and to employ this treatment to assist cloning by intracytoplasmic injection of whole cumulus cells. To do that, COCs were collected from cow ovaries obtained from a slaughterhouse and in vitro-matured in TCM-199, at 39°C under 6% CO2 in air for 24 h. After removal of cumulus cells, metaphase II (MII) oocytes were treated with 5 μM ionomycin (Io) for 4 min and randomly assigned to the following activation groups: a) DhL/CB (incubation with 1 μM DhL and 5 μg mL-1 CB, for 3 h); b) DhL/long CB (treatment DhL/CB for 3 h, followed by exposure to 5 μg mL-1 CB alone, for 3 additional hours); and c) DMAP (incubation with 2 mM 6-DMAP for 3 h). In experiment 1, activated oocytes underwent IVC for 48 h and cleaved embryos were treated with 1 μg mL-1 colchicine for 6 h, fixed on glass slides, and stained with 5% vol/vol Giemsa solution to assess chromosomal complements. In experiment 2, MII oocytes were mechanically enucleated and injected with whole cumulus cells obtained from IVM COCs. After 2 h, reconstructed eggs were treated with 5 μM Io for 4 min and randomly exposed to the activation treatments a, b, or c. Parthenogenetic control groups were also included. All embryos were cultured in SOF medium and rates of cleavage, morulae, and blastocysts were evaluated on Days 2, 5, and 8 (Table 1). Results showed that DhL/long CB diploidy rates were significantly higher than those of DhL/CB and DMAP (63.8, 40. and 31.6%, respectively; Fisher’s test, P < 0.05). Both DhL treatments induced polyploidy rates lower than DMAP (5.2, 10.6, and 31.6%, respectively; P < 0.05). Finally, Io followed by DhL/CB or DhL/long CB was able to induce cloned blastocyst rates not statistically different from Io plus DMAP (P > 0.05), but presumably with a higher degree of normal embryo ploidy. Table 1.In vitro development of bovine cloned embryos activated with DhL and CB


Zygote ◽  
1999 ◽  
Vol 7 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Lalantha R. Abeydeera ◽  
Wei-Hua Wang ◽  
Thomas C. Cantley ◽  
Randall S. Prather ◽  
Billy N. Day

The present study examined the effect of different concentrations of cysteine in the presence of a thiol compound, β-mercaptoethanol (BME), during in vitro maturation (IVM) of pig oocytes on cumulus expansion, nuclear maturation, intracellular glutathione (GSH) level and subsequent embryonic development after in vitro fertilisation (IVF). In experiment 1, oocytes were matured in NCSU 23 medium containing 10% porcine follicular fluid, 25 μM BME, 0.5 μg/ml LH, 0.5 μg/ml FSH and 0, 0.1, 0.2 or 0.4 mg/ml cysteine for 20–22 h and then without hormonal supplements for an additional 20–22 h. After culture, cumulus cells were removed and a proportion of oocytes fixed to examine the rate of nuclear maturation. The remaining oocytes were co-incubated with spermatozoa for 5–6 h and putative zygotes were transferred to NCSU 23 medium containing 0.4% bovine serum albumin for 144 h. A proportion of putative zygotes were fixed 12 h after insemination to examine fertilisation parameters. In experiment 2, oocytes were matured as in experiment 1 and the GSH content was measured by a DTNB-GSSG reductase recycling assay. No mean differences among treatments were observed in nuclear maturation (78–89%). The mean differences in penetration rate (69–77%), polyspermy rate (31–40%), male pronuclear formation rate (93–96%) or mean number of sperm per oocyte (1.5-1.8) were not affected by the presence or absence of cysteine during oocyte maturation. Also no difference was observed in cleavage rates 48 h after insemination. However, compared with no addition (19%), the presence of 0.1-0.4 mg/ml cysteine during IVM increased (p < 0.001) the proportion of blastocysts (32–39%) at 144 h. In comparison with controls (5.6 pmol/oocyte), the GSH content of oocytes matured in the presence of cysteine was significantly (p < 0.001) higher (13–15 pmol/oocyte) with no mean differences among different cysteine concentrations. The results indicate that in the presence of a thiol compound, supplementation of IVM medium with cysteine can increase the GSH level and improve the developmental competence of pig oocytes following fertilisation. Further, no effect on either GSH level or embryo development was observed by increasing the levels of cysteine supplementation from 0.1 to 0.4 mg/ml.


Sign in / Sign up

Export Citation Format

Share Document